首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508013--1)

非线性环路反射镜锁模光纤激光器的研究进展

Research Advances in Mode-Locked Fiber Lasers Based on Nonlinear Loop Mirror

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

围绕着解决环境稳定性、自启动等主要挑战,非线性环镜锁模技术的发展脉络可概括为含有偏振控制器的非全保偏结构、双增益式全保偏八字腔结构和含有相位偏置器的全保偏九字腔结构。其中新型的九字腔非线性环镜锁模光纤激光器兼具自启动性能好、环境稳定性高、结构简单、成本低廉等特点,在光学频率梳、太赫兹抽运源以及工业材料微加工等领域有着良好的应用前景。

Abstract

To improve the environmental stability and self-starting ability, researchers have developed the nonlinear optical-loop mirror and nonlinear amplifying-loop mirror (NALM) mode-locking technologies. The developing process of these technologies can be summarized as the following three phases: non-polarization-maintaining (PM) structures with polarization controllers, PM figure-of-8 cavity structures with dual-gain, and PM figure-of-9 cavity structures with a phase shifter. Among these, the newly invented figure-of-9 NALM mode-locked fiber laser is particularly advantageous owing to its easy self-starting ability, long-term stability, concise structure, and cost-effectiveness. Such a mode-locked fiber laser is increasingly employed in applications such as optical frequency combs, generation of THz radiation, and advanced material micromachining.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201946.0508013

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(61805262)、中国博士后科学基金面上资助(2018M630474)

收稿日期:2018-12-12

修改稿日期:2019-01-25

网络出版日期:2019-02-15

作者单位    点击查看

周佳琦:中国科学院上海光学精密机械研究所, 上海 201800
潘伟巍:中国科学院上海光学精密机械研究所, 上海 201800
张磊:上海频准激光科技有限公司, 上海 201800
Gu Xijia:Ryerson University, Toronto, ON M5B 2K3, Canada
冯衍:中国科学院上海光学精密机械研究所, 上海 201800

联系人作者:冯衍(feng@siom.ac.cn)

【1】Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

【2】Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

【3】Fermann M E, Hartl I. Ultrafast fiber lasers[J]. Nature Photonics, 2013, 7: 868-874.

【4】Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92.

【5】Zhang H, Bao Q L, Tang D Y, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker[J]. Applied Physics Letters, 2009, 95(14): 141103.

【6】Turitsyn S K, Bale B G, Fedoruk M P. Dispersion-managed solitons in fibre systems and lasers[J]. Physics Reports, 2012, 521(4): 135-203.

【7】Oktem B, lgüdür C, Ilday F . Soliton-similariton fibre laser[J]. Nature Photonics, 2010, 4(5): 307-311.

【8】Renninger W H, Chong A, Wise F W. Dissipative solitons in normal-dispersion fiber lasers[J]. Physical Review A, 2008, 77(2): 023814.

【9】Okhotnikov O, Grudinin A, Pessa M. Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications[J]. New Journal of Physics, 2004, 6: 177.

【10】Wang F, Rozhin A G, Scardaci V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser[J]. Nature Nanotechnology, 2008, 3(12): 738-742.

【11】Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

【12】Matsas V J, Newson T P, Richardson D J, et al. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391.

【13】Liu Z W, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654.

【14】Pan W W, Zhou J Q, Zhang L, et al. Rectangular pulse generation from a mode locked Raman fiber laser[J]. Journal of Lightwave Technology, 2019, 37(4): 1333-1337.

【15】Zhou J Q, Pan W W, Gu X J, et al. Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber[J]. Optics Express, 2018, 26(4): 4166-4171.

【16】Szczepanek J, Karda T M, Radzewicz C, et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 2017, 42(3): 575-578.

【17】Sidorenko P, Fu W, Wright L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 2018, 43(11): 2672-2675.

【18】Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58.

【19】Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754.

【20】Duling I N. Subpicosecond all-fibre erbium laser[J]. Electronics Letters, 1991, 27(6): 544-545.

【21】Duling I N. All-fiber ring soliton laser mode locked with a nonlinear mirror[J]. Optics Letters, 1991, 16(8): 539-541.

【22】Dennis M L, Duling I N. Experimental study of sideband generation in femtosecond fiber lasers[J]. IEEE Journal of Quantum Electronics, 1994, 30(6): 1469-1477.

【23】Nakazawa M, Yoshida E, Kimura Y. Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes[J]. Applied Physics Letters, 1991, 59(17): 2073-2075.

【24】Feng X H, Tam H Y, Liu H L, et al. Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror[J]. Optics Communications, 2006, 268(2): 278-281.

【25】Ilday F , Wise F W, Sosnowski T. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror[J]. Optics Letters, 2002, 27(17): 1531-1533.

【26】Pottiez O, Ibarra-Escamilla B, Kuzin E A, et al. Generation of high-energy pulses from an all-normal-dispersion figure-8 fiber laser[J]. Laser Physics, 2010, 20(3): 709-715.

【27】Zhao L M, Bartnik A C, Tai Q Q, et al. Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror[J]. Optics Letters, 2013, 38(11): 1942-1944.

【28】Aguergaray C, Hawker R, Runge A F J, et al. 120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser[J]. Applied Physics Letters, 2013, 103(12): 121111.

【29】Aguergaray C, Broderick N G R, Erkintalo M, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 2012, 20(10): 10545-10551.

【30】Runge A F J, Aguergaray C, Provo R, et al. All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror[J]. Optical Fiber Technology, 2014, 20(6): 657-665.

【31】Bowen P, Singh H, Runge A, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser at 1060nm[J]. Optics Communications, 2016, 364: 181-184.

【32】Zhou J Q, Gu X J. 32-nJ 615-fs stable dissipative soliton ring cavity fiber laser with Raman scattering[J]. IEEE Photonics Technology Letters, 2016, 28(4): 453-456.

【33】Zhou J Q, Gu X J. 50.5 nJ, 750 fs all-fiber all polarization-maintaining fiber laser[C]. CLEO: Science and Innovations, 2015: SM3P.1.

【34】Kuse N, Jiang J, Lee C C, et al. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror[J]. Optics Express, 2016, 24(3): 3095-3102.

【35】Hnsel W, Hoogland H, Giunta M, et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation[J]. Applied Physics B, 2017, 123: 41.

【36】Liu G Y, Jiang X H, Wang B, et al. 313 MHz repetition rate mode-locked Yb∶fiber laser with phase-biased nonlinear amplifying loop mirror[J]. Laser Physics Letters, 2017, 14(8): 085103.

【37】Liu G Y, Jiang X H, Wang A M, et al. Robust 700 MHz mode-locked Yb∶fiber laser with a biased nonlinear amplifying loop mirror[J]. Optics Express, 2018, 26(20): 26003-26009.

【38】Liu W, Shi H S, Cui J H, et al. Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror[J]. Optics Letters, 2018, 43(12): 2848-2851.

【39】Lezius M, Wilken T, Deutsch C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381-1387.

【40】Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

【41】Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

【42】Yang S, Hao Q, Zeng H P. Repetition rate precision lock of nonlinear amplifying loop mirror passively mode-locked fiber laser[J].Chinese Journal of Lasers, 2018, 45(8): 0801007.
杨松, 郝强, 曾和平. 非线性放大环形镜被动锁模光纤激光器重复频率精确锁定研究[J]. 中国激光, 2018, 45(8): 0801007

【43】Chen F, de Aldana J R V. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 2014, 8(2): 251-275.

【44】Hu X B, Hao Q, Guo Z R, et al. Dicing of sapphire wafer with all-fiber picosecond laser[J]. Chinese Journal of Lasers, 2017, 44(1): 102016.
胡小豹, 郝强, 郭政儒, 等. 全光纤皮秒激光切割蓝宝石晶圆的实验研究[J]. 中国激光, 2017, 44(1): 102016.

【45】Sun R Y, Tan F Z, Jin D C, et al. 1 μm femtosecond fiber chirped pulse amplification system based on dispersion wave[J]. Chinese Journal of Lasers, 2018, 45(1): 0101001
孙若愚, 谭方舟, 金东臣, 等. 基于色散波的1 μm飞秒光纤啁啾脉冲放大系统[J]. 中国激光, 2018, 45(1): 0101001.

【46】Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

【47】Kou K, Zhao G Z, Liu Y, et al. Simultaneously determinations of sample thickness and refractive index by terahertz time-domain spectroscopy[J]. Chinese Journal of Lasers, 2015, 42(8): 0815001.
寇宽, 赵国忠, 刘英, 等. 利用太赫兹时域光谱同时确定样品厚度和折射率[J]. 中国激光, 2015, 42(8): 0815001.

【48】Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1): 124-166.

引用该论文

Zhou Jiaqi,Pan Weiwei,Zhang Lei,Gu Xijia,Feng Yan. Research Advances in Mode-Locked Fiber Lasers Based on Nonlinear Loop Mirror[J]. Chinese Journal of Lasers, 2019, 46(5): 0508013

周佳琦,潘伟巍,张磊,Gu Xijia,冯衍. 非线性环路反射镜锁模光纤激光器的研究进展[J]. 中国激光, 2019, 46(5): 0508013

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF