首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508016--1)

超快拉曼光纤激光器技术研究进展

Research Advances in Ultrafast Raman Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

锁模和超短脉冲同步抽运是拉曼光纤激光器得到超短脉冲的主要方式。在锁模拉曼光纤激光器中,基于等效可饱和吸收体的结构可以实现较高性能的输出,但目前仍面临增益光纤过长带来的问题。超短脉冲同步抽运的方式可以有效解决这一问题,实现参数极佳的超快拉曼激光输出。超快拉曼光纤激光器发展潜力巨大,未来的研究将着眼于进一步提升各类超快拉曼光纤激光器的整体输出性能并探究其中的新现象。

Abstract

Mode-locking and ultrashort pulse synchronous pumping are the main ways to obtain ultrashort pulses from Raman fiber lasers. In the mode-locked Raman fiber lasers, high performance output can be achieved in the structure with equivalent saturable absorbers, but the limitation caused by the long gain fiber remains. The method of synchronous pumping can overcome this problem effectively and achieve excellent ultrafast Raman laser output. There is a great potential for the ultrafast Raman fiber laser technology, and future research will focus on further improving the overall performance of various ultrafast Raman fiber lasers and investigating new phenomena observed in these laser systems.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201946.0508016

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(61575210,61805262)、中国博士后科学基金面上项目(2018M630474)

收稿日期:2018-12-12

修改稿日期:2019-02-01

网络出版日期:2019-03-01

作者单位    点击查看

潘伟巍:中国科学院上海光学精密机械研究所高功率光纤激光技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
周佳琦:中国科学院上海光学精密机械研究所高功率光纤激光技术实验室, 上海 201800
张磊:上海频准激光科技有限公司, 上海 201800
冯衍:中国科学院上海光学精密机械研究所高功率光纤激光技术实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049

联系人作者:冯衍(feng@siom.ac.cn)

【1】Krausz F, Fermann M E, Brabec T, et al. Femtosecond solid-state lasers[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2097-2122.

【2】Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950):831-838.

【3】Ell R, Morgner U, Krtner F X, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser[J]. Optics Letters, 2001, 26(6): 373-375.

【4】Herink G, Jalali B, Ropers C, et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate[J]. Nature Photonics, 2016, 10(5): 321-326.

【5】Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

【6】Kerse C, Kalaycolu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88.

【7】Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874.

【8】Kieu K, Renninger W H, Chong A, et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 2009, 34(5): 593-595.

【9】Zhang L, Zhou J, Wang Z, et al. SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1314-1316.

【10】Zhou J, Pan W, Gu X, et al. Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber[J]. Optics Express, 2018, 26(4): 4166-4171.

【11】Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

【12】Oktem B, lgüdür C, Ilday F . Soliton-similariton fibre laser[J]. Nature Photonics, 2010, 4(5): 307-311.

【13】Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92.

【14】Chang W, Ankiewicz A, Soto-Crespo J M, et al. Dissipative soliton resonances[J]. Physical Review A, 2008, 78(2): 023830.

【15】Huang Y, Hu Z, Cui H, et al. Coexistence of harmonic soliton molecules and rectangular noise-like pulses in a figure-eight fiber laser[J]. Optics Letters, 2016, 41(17): 4056-4059.

【16】Liu X, Yao X, Cui Y. Real-time observation of the buildup of soliton molecules[J]. Physical Review Letters, 2018, 121(2): 023905.

【17】Dyball H. Yellow lasers hit the spot[J]. Electronics Letters, 2010, 46(8): 545.

【18】Grosche G, Lipphardt B, Schnatz H. Optical frequency synthesis and measurement using fibre-based femtosecond lasers[J]. The European Physical Journal D, 2008, 48(1): 27-33.

【19】Feng Y, Zhang L. Raman fiber lasers[M]. Cham: Springer International Publishing, 2017: 207.

【20】Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers[J]. Journal of Optics, 2017, 19(2): 023001.

【21】Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.

【22】Zhang L, Jiang H, Yang X, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611.

【23】Bromage J. Raman amplification for fiber communications systems[J]. Journal of Lightwave Technology, 2004, 22(1): 79-93.

【24】Feng Y, Jiang H W, Zhang L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005.
冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光, 2017, 44(2): 0201005.

【25】Dong J, Zhang L, Zhou J, et al. 220 W Raman fiber laser at 1.24 μm based on phosphosilicate fiber[J/OL]. IEEE Photonics Technology Letters, 2018[2018-12-01]. https:∥ieeexplore.ieee.org/document/8579106.

【26】Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser[J]. Nature Photonics, 2010, 4(4): 231-235.

【27】Huang L, Xu J, Ye J, et al. Power scaling of linearly polarized random fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0900608.

【28】Tian C P, Wang Y Y, Shi H X, et al. Mid-infrared Raman laser source based on liquid-core fiber[J]. Laser & Optoelectronics Progress, 2017, 54(5): 051405.
田翠萍, 汪滢莹, 师红星, 等. 基于液芯光纤的中红外拉曼激光光源[J]. 激光与光电子学进展, 2017, 54(5): 051405.

【29】Weiner A. Ultrafast optics[M]. Hoboken:Wiley, 2009.

【30】Yang X, Zhang L, Jiang H, et al. Actively mode-locked Raman fiber laser[J]. Optics Express, 2015, 23(15): 19831-19836.

【31】Uznetsov A G K, Harenko D S K, Odivilov E V P, et al. Fifty-ps Raman fiber laser with hybrid active-passive mode locking[J]. Optics Express, 2016, 24(15): 23872-23877.

【32】Chamorovskiy A, Rautiainen J, Lyytikinen J, et al. Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror[J]. Optics Letters, 2010, 35(20): 3529-3531.

【33】Castellani C E S, Kelleher E J R, Travers J C, et al. Ultrafast Raman laser mode-locked by nanotubes[J]. Optics Letters, 2011, 36(20): 3996-3998.

【34】Castellani C E S, Kelleher E J R, Popa D, et al. CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes[J]. Laser Physics Letters, 2013, 10(1): 015101.

【35】Zhang L, Wang G, Hu J, et al. Linearly polarized 1180-nm Raman fiber laser mode locked by graphene[J]. IEEE Photonics Journal, 2012, 4(5): 1809-1815.

【36】Xu J, Wu S D, Liu J, et al. Noise-like pulsed Raman fiber lasers using graphene oxide saturable absorber[J]. Chinese Journal of Lasers, 2014, 41(3): 0302006.
徐佳, 吴思达, 刘江, 等. 基于氧化石墨烯的类噪声脉冲拉曼光纤激光器[J]. 中国激光, 2014, 41(3): 0302006.

【37】Chamorovskiy A, Rantamki A, Sirbu A, et al. 1.38-μm mode-locked Raman fiber laser pumped by semiconductor disk laser[J]. Optics Express, 2010, 18(23): 23872-23877.

【38】Zhan L, Kuang Q, Gu Z, et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 2015, 33(2): 391-395.

【39】Liu J, Chen Y, Tang P, et al. Duration switchable high-energy passively mode-locked Raman fiber laser based on nonlinear polarization evolution[J]. IEEE Photonics Journal, 2015, 7(5): 1503207.

【40】Pan W, Zhang L, Zhou J, et al. Raman dissipative soliton fiber laser pumped by an ASE source[J]. Optics Letters, 2017, 42(24): 5162-5165.

【41】Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58.

【42】Chestnut D A, Taylor J R. Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries[J]. Optics Letters, 2005, 30(22): 2982-2984.

【43】Aguergaray C, Méchin D, Kruglov V, et al. Experimental realization of a mode-locked parabolic Raman fiber oscillator[J]. Optics Express, 2010, 18(8): 8680-8687.

【44】Stolen R H, Lin C, Jain R K. A time-dispersion-tuned fiber Raman oscillator[J]. Applied Physics Letters, 1977, 30(7): 340-342.

【45】Lin C, French W G. A near-infrared fiber Raman oscillator tunable from 1.07 to 1.32 μm[J]. Applied Physics Letters, 1979, 34(10): 666-668.

【46】Nakazawa M, Kuznetsov M, Ippen E. Theory of the synchronously pumped fiber Raman laser[J]. IEEE Journal of Quantum Electronics, 1986, 22(10): 1953-1966.

【47】Smith K, Kean P N, Crust D W, et al. An experimental study of a synchronously pumped fibre Raman oscillator[J]. Journal of Modern Optics, 1987, 34(9): 1227-1233.

【48】Golovchenko E A, Dianov E M, Mamyshev P V, et al. Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers[J]. Journal of the Optical Society of America B, 1990, 7(2): 172-181.

【49】Lin D, Alam S, Teh P S, et al. Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses[J]. Optics Letters, 2011, 36(11): 2050-2052.

【50】Babin S A, Podivilov E V, Kharenko D S, et al. Multicolour nonlinearly bound chirped dissipative solitons[J]. Nature Communications, 2014, 5: 4653.

【51】Churin D, Olson J, Norwood R A, et al. High-power synchronously pumped femtosecond Raman fiber laser[J]. Optics Letters, 2015, 40(11): 2529-2532.

【52】Chen H, Chen S-P, Jiang Z-F, et al. All-fiberized synchronously pumped 1120 nm picosecond Raman laser with flexible output dynamics[J]. Optics Express, 2015, 23(18): 24088-24096.

【53】Kobtsev S, Kukarin S, Kokhanovskiy A. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre[J]. Optics Express, 2015, 23(14): 18548-18553.

【54】Kharenko D S, Efremov V D, Evmenova E A, et al. Generation of Raman dissipative solitons near 13 microns in a phosphosilicate-fiber cavity[J]. Optics Express, 2018, 26(12): 15084-15089.

【55】Pan W, Zhang L, Jiang H, et al. Ultrafast Raman fiber laser with random distributed feedback[J]. Laser & Photonics Reviews, 2018, 12(4): 1700326.

【56】Horowitz M, Barad Y, Silberberg Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser[J]. Optics Letters, 1997, 22(11): 799-801.

【57】Smirnov S, Kobtsev S. Modelling of noise-like pulses generated in fibre lasers[J]. Proceedings of SPIE, 2016, 9732: 97320S.

引用该论文

Pan Weiwei,Zhou Jiaqi,Zhang Lei,Feng Yan. Research Advances in Ultrafast Raman Fiber Lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508016

潘伟巍,周佳琦,张磊,冯衍. 超快拉曼光纤激光器技术研究进展[J]. 中国激光, 2019, 46(5): 0508016

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF