首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508003--1)

铌酸锂芯片上的太赫兹集成和时空超分辨成像

Terahertz Integration and Spatio-Temporal Super-Resolution Imaging on LiNbO3 Chip

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒激光与铁电晶体铌酸锂作用可以激发出太赫兹波段的声子极化激元。当铌酸锂的厚度减小至亚波长量级时,晶片就成为一个将太赫兹波产生、传输、调控、探测、与物质或微结构相互作用等过程集于一体的集成化芯片,为太赫兹波的研究和应用提供了平台。同时,利用时空超分辨成像技术可以对芯片中太赫兹波的传输以及与微结构作用过程进行可视化和定量分析。回顾了一些基于铌酸锂芯片的工作,比如太赫兹波传输特性的研究、频率可调谐太赫兹波源的产生、微结构对太赫兹波的调控等,这些工作说明亚波长铌酸锂芯片是一个很有前途的太赫兹集成器件。

Abstract

Terahertz phonon polaritons can be generated in ferroelectric crystal LiNbO3 using femtosecond laser pulses. When the crystal thickness becomes comparable with or less than the terahertz wavelength, LiNbO3 functions as an integrated chip that integrates the processes of generation, propagation, control, and detection of terahertz wave and its interaction with materials or microstructures. This provides a platform for the research and applications of terahertz waves. Moreover, by using the spatio-temporal super-resolution imaging technology, the transmission in the chip and interaction of terahertz waves with microstructures can be visualized and quantitatively analyzed. This paper reviews some works on the LiNbO3 chip, such as the research on terahertz propagation characteristics, generation of frequency-tunable terahertz sources, and terahertz modulation using microstructures. These results demonstrate that the subwavelength LiNbO3 chip is a promising terahertz integrated device.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201946.0508003

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(61705013,11874229)、高等学校学科创新引智计划(111计划)(B07013)、长江学者和创新团队发展计划(IRT_13R29)

收稿日期:2018-12-08

修改稿日期:2019-01-23

网络出版日期:2019-02-18

作者单位    点击查看

张琦:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
吴强:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
张斌:中国民航大学理学院, 天津 300300
潘崇佩:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
王日德:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
卢瑶:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
齐继伟:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
许京军:南开大学物理科学学院泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457

联系人作者:吴强(wuqiang@nankai.edu.cn)

【1】Sajadi M, Wolf M, Kampfrath T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles[J]. Nature Communications, 2017, 8: 14963.

【2】Jelic V, Iwaszczuk K, Nguyen P H, et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 2017, 13(6): 591-598.

【3】Pan L D, Kim S K, Ghosh A, et al. Low-energy electrodynamics of novel spin excitations in the quantum spin ice Yb2Ti2O7[J]. Nature Communications, 2014, 5: 4970.

【4】Cole W T S, Farrell J D, Wales D J, et al. Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm[J]. Science, 2016, 352(6290): 1194-1197.

【5】Borodianskyi E A, Krasnov V M. Josephson emission with frequency span 1-11 THz from small Bi2Sr2CaCu2O8+δ mesa structures[J]. Nature Communications, 2017, 8(1): 1742.

【6】Dienst A, Casandruc E, Fausti D, et al. Optical excitation of Josephson plasma solitons in a cuprate superconductor[J]. Nature Materials, 2013, 12(6): 535-541.

【7】Davies A G, Burnett A D, Fan W H, et al. Terahertz spectroscopy of explosives and drugs[J]. Materials Today, 2008, 11(3): 18-26.

【8】Woolard D L, Brown R, Pepper M, et al. Terahertz frequency sensing and imaging: a time of reckoning future applications?[J]. Proceedings of the IEEE, 2005, 93(10): 1722-1743.

【9】Stantchev R I, Sun B Q, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190.

【10】Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143-171.

【11】Koenig S, Lopez-Diaz D, Antes J,et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12): 977-981.

【12】Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

【13】Dragoman D, Dragoman M. Terahertz fields and applications[J]. Progress in Quantum Electronics, 2004, 28(1): 1-66.

【14】Dey I, Jana K, Fedorov V Y, et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids[J]. Nature Communications, 2017, 8: 1184.

【15】Chai T T, Chai L, Zhu W A, et al. Improving output efficiency of terahertz wave by controlling temporal and spatial chirps of pump pulses. Acta Optica Sinica, 2016, 36(10): 1026019.
柴婷婷, 柴路, 朱伟岸, 等. 调控抽运脉冲的时、空啁啾改善太赫兹波输出效率[J]. 光学学报, 2016, 36(10): 1026019.

【16】Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors[J]. Advanced Materials, 2015, 27(37): 5567-5572.

【17】Huang Z M, Zhou W, Tong J C, et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced Materials, 2016, 28(1): 112-117.

【18】Stoyanov N S, Feurer T, Ward D W, et al. Integrated diffractive terahertz elements[J]. Applied Physics Letters, 2003, 82(5): 674-676.

【19】Huang S W, Yang J H, Yang S H, et al. Globally stable microresonator turing pattern formation for coherent high-power THz radiation on-chip[J]. Physical Review X, 2017, 7(4): 041002.

【20】Yao B C, Liu Y, Huang S W, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photonics, 2018, 12(1): 22-28.

【21】Feurer T, Stoyanov N S, Ward D W, et al. Terahertz polaritonics[J]. Annual Review of Materials Research, 2007, 37(1): 317-350.

【22】Stoyanov N S, Ward D W, Feurer T, et al. Terahertz polariton propagation in patterned materials[J]. Nature Materials, 2002, 1(2): 95-98.

【23】Auston D H, Cheung K P, Valdmanis J A, et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 1984, 53(16): 1555.

【24】Werley C A, Nelson K A. Generation of multicycle terahertz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts[J]. Applied Physics Letters, 2009, 95(10): 103304.

【25】Chen Z, Zhou X B, Werley C A, et al. Generation of high power tunable multicycle teraherz pulses[J]. Applied Physics Letters, 2011, 99(7): 071102.

【26】Yang H M, Qi J W, Pan C P, et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in lithium niobate subwavelength waveguide[J]. Optics Express, 2017, 25(13): 14766.

【27】Yang C L, Wu Q, Xu J J, et al. Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide[J]. Optics Express, 2010, 18(25): 26351.

【28】Werley C A, Fan K B, Strikwerda A C, et al. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements[J]. Optics Express, 2012, 20(8): 8551.

【29】Zhang Q, Qi J W, Wu Q, et al. Surface enhancement of THz wave by coupling a subwavelength LiNbO3 slab waveguide with a composite antenna structure[J]. Scientific Reports, 2017, 7(1): 17602.

【30】Zhang B, Wu Q, Pan C P, et al. THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide[J]. Optics Express, 2015, 23(12): 16042.

【31】Wang R D, Wu Q, Zhang Q, et al. Conversion from terahertz-guided waves to surface waves with metasurface[J]. Optics Express, 2018, 26(24): 31233.

【32】Wu Q, Werley C A, Lin K H, et al. Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide[J]. Optics Express, 2009, 17(11): 9219.

【33】Werley C A, Wu Q, Lin K H, et al. Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3[J]. Journal of the Optical Society of America B, 2010, 27(11): 2350.

【34】Wu Q, Chen Q Q, Zhang B, et al. Terahertz phonon polariton imaging[J]. Frontiers of Physics, 2013, 8(2): 217-227.

【35】Sivarajah P, Ofori-Okai B K, Teo S M, et al. The homogenization limit and waveguide gradient index devices demonstrated through direct visualization of THz fields[J]. New Journal of Physics, 2015, 17(1): 013013.

【36】Pan C P, Wu Q, Zhang Q, et al. Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors[J]. Optics Express, 2017, 25(9): 9768.

【37】Gan Z Z. Advances in polariton research: to commemorate the 90th anniversary of Mr. Huang Kun[J]. Physics, 2009, 38(8): 581-591.
甘子钊. 极化激元研究的进展: 纪念黄昆先生90诞辰[J]. 物理, 2009, 38(8): 581-591.

【38】Huang K. On the interaction between the radiation field and ionic crystals[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1951, 208(1094): 352-365.

【39】Huang K. Lattice vibrations and optical waves in ionic crystals[J]. Nature, 1951, 167(4254): 779-780.

【40】Hopfield J J. Theory of the contribution of excitons to the complex dielectric constant of crystals[J]. Physical Review, 1958, 112(5): 1555.

【41】Henry C H, Hopfield J J. Raman scattering by polaritons[J]. Physical Review Letters, 1965, 15(25): 964.

【42】Ward D W. Polaritonics: an intermediate regime between electronics and photonics[D]. Cambridge: Massachusetts Institute of Technology, 2005.

【43】Chen Z. Modeling phonon-polariton generation and control in ferroelectric crystals[D]. Cambridge: Massachusetts Institute of Technology, 2009.

【44】Dougherty T P, Wiederrecht G P, Nelson K A. Impulsive stimulated Raman scattering experiments in the polariton regime[J]. Journal of the Optical Society of America B, 1992, 9(12): 2179.

【45】Crimmins T F, Stoyanov N S, Nelson K A. Heterodyned impulsive stimulated Raman scattering of phonon-polaritons in LiTaO3 and LiNbO3[J]. The Journal of Chemical Physics, 2002, 117(6): 2882-2896.

【46】Rolland A, Loas G, Brunel M, et al. Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source[J]. Optics Express, 2011, 19(19): 17944.

【47】Li D, Ma G H. Pump-wavelength dependence of terahertz radiation via optical rectification in (110)-oriented ZnTe crystal[J]. Journal of Applied Physics, 2008, 103(12): 123101.

【48】Hu B B, Zhang X C, Auston D H, et al. Free-space radiation from electro-optic crystals[J]. Applied Physics Letters, 1990, 56(6): 506-508.

【49】Lu Y, Wu Q, Zhang Q, et al. Propagation of THz pulses in rectangular subwavelength dielectric waveguides[J]. Journal of Applied Physics, 2018, 123(22): 223103.

【50】Ofori-Okai B K, Sivarajah P, Werley C A, et al. Direct experimental visualization of waves and band structure in 2D photonic crystal slabs[J]. New Journal of Physics, 2014, 16(5): 053003.

【51】Li S S, Chang S J, Zhang H, et al. Terahertz polarization splitter based on filled porous fiber[J]. Acta Optica Sinica, 2014, 34(7): 0723003.
李珊珊, 常胜江, 张昊, 等. 基于填充式多孔光纤的太赫兹偏振分离器[J]. 光学学报, 2014, 34(7): 0723003.

【52】Mao C X, Zang X F, Zhu Y M. Research on interference of near-field terahertz vortex beams[J]. Chinese Journal of Lasers, 2019, 46(1): 0114001.
茅晨曦, 臧小飞, 朱亦鸣. 太赫兹近场涡旋光束的干涉研究[J]. 中国激光, 2019, 46(1): 0114001.

【53】Sivarajah P, Werley C A, Ofori-Okai B K, et al. Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3[J]. Applied Physics A, 2013, 112(3): 615-622.

【54】Vahala K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

【55】Kippenberg T J, Vahala K J. Cavity opto-mechanics[J]. Optics Express, 2007, 15(25): 17172.

【56】Chen H T, O′Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics, 2008, 2(5): 295-298.

【57】Padilla W J, Aronsson M T, Highstrete C, et al. Electrically resonant terahertz metamaterials: theoretical and experimental investigations[J]. Physical Review B, 2007, 75(4): 041102.

引用该论文

Zhang Qi,Wu Qiang,Zhang Bin,Pan Chongpei,Wang Ride,Lu Yao,Qi Jiwei,Xu Jingjun. Terahertz Integration and Spatio-Temporal Super-Resolution Imaging on LiNbO3 Chip[J]. Chinese Journal of Lasers, 2019, 46(5): 0508003

张琦,吴强,张斌,潘崇佩,王日德,卢瑶,齐继伟,许京军. 铌酸锂芯片上的太赫兹集成和时空超分辨成像[J]. 中国激光, 2019, 46(5): 0508003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF