首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508012--1)

高功率光纤飞秒激光放大器的研究现状与发展趋势

Research Status and Development Trend of High Power Femtosecond Fiber Laser Amplifiers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对高功率光纤飞秒激光放大器,介绍了啁啾脉冲放大(CPA)技术的基本原理,讨论了该结构中关键的展宽器和压缩器的发展现状与瓶颈;介绍了典型的大模场面积光纤的结构和工作原理,简介了基于大模场面积光纤的CPA系统的发展现状;介绍了非线性放大技术,讨论了实现更窄脉冲宽度、更高脉冲质量的光纤飞秒激光放大方案;最后分析了全光纤结构、相干合束、单晶光纤增益介质以及皮秒种子源等新型技术,并总结了高功率光纤飞秒激光放大器的发展趋势。

Abstract

This article introduces the basic principle of chirped pulse amplification (CPA) for high-power femtosecond fiber laser amplifiers, along with a discussion of the development status and bottlenecks of the key stretchers and compressors in the CPA structure. It provides a description of the structure and working principle of a typical large-mode-area fiber, and briefly discusses the development status of the corresponding CPA system based on this kind of fiber. Further, it introduces the nonlinear amplification technologies, and discusses an amplification scheme for narrower pulse duration and higher pulse quality. Finally, it presents an analysis of advanced technologies such as an all-fiber structure, coherent beam combination, single-crystal fibers as active elements, and picosecond seed sources, and provides a summary of the development trend of high-power femtosecond fiber laser amplifiers.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201946.0508012

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(11527808,U1730115,61535009)、强场激光物理国家重点实验室开放基金

收稿日期:2018-12-12

修改稿日期:2019-01-23

网络出版日期:2019-02-18

作者单位    点击查看

闫东钰:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
刘博文:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
宋寰宇:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
李源:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
储玉喜:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
柴路:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
胡明列:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
王清月:天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072

联系人作者:刘博文(bwliu@tju.edu.cn)

【1】Knig J, Nolte S, Tünnermann A. Plasma evolution during metal ablation with ultrashort laser pulses[J]. Optics Express, 2005, 13(26): 10597-10607.

【2】Schaffer C B, Brodeur A, García J F, et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy[J]. Optics Letters, 2001, 26(2): 93-95.

【3】Cingz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet[J]. Nature, 2012, 482(7383): 68-71.

【4】Pask H M, Carman R J, Hanna D C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 2-13.

【5】Fermann M E, Hartl I. Ultrafast fiber laser technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 191-206.

【6】Limpert J, Liem A, Zellmer H, et al. High-average-power millijoule fiber amplifier system[C]∥Summaries of Papers Presented at the Lasers and Electro-Optics, CLEO′02, Technical Diges, May 24-24, 2002, Long Beach, CA, USA. New York: IEEE, 2002: 591-592.

【7】Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

【8】Galvanauskas A, Blixt P, Tellefsen J A Jr. Generation of femtosecond optical pulses with nanojoule energy from a diode laser and fiber based system[J]. Applied Physics Letters, 1993, 63(13): 1742-1744.

【9】Cho G C, Galvanauskas A, Fermann M E, et al. 100 μJ and 5.5 W Yb-fiber femtosecond chirped pulse amplifier system[C]∥Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Postconference Edition, May 7-12, 2000, San Francisco, CA, USA. New York: IEEE, 2000: 118.

【10】Maurer R D. Optical waveguide light source: US3808549[P]. 1972-03-30. https:∥patents.google.com/patent/US3808549A/en.

【11】Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

【12】Richardson D J, Nilsson J, Clarkson W A. High power fibre lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

【13】Koplow J P, Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fibre amplifier[J]. Optics Letters, 2000: 25(7): 442-444.

【14】Marciante J R. Gain filtering for single-spatial-mode operation of large-mode-area fibre amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 30-36.

【15】Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.

【16】Chai L, Hu M L, Fang X H, et al. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101001.
柴路, 胡明列, 方晓惠, 等. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001.

【17】Limpert J, Schreiber T, Nolte S, et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber[J]. Optics Express, 2003, 11(24): 3332-3337.

【18】Rser F, Schimpf D, Schmidt O , et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(15): 2230-2232.

【19】Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

【20】Limpert J, Deguil-Robin N, Manek-Hnninger I, et al. High-power rod-type photonic crystal fiber laser[J]. Optics Express, 2005, 13(4): 1055-1058.

【21】Limpert J, Schmidt O, Rothhardt J, et al. Extended single-mode photonic crystal fiber lasers[J]. Optics Express, 2006, 14(7): 2715-2720.

【22】Teodoro F D, Hemmat M K, Morais J, et al. High peak power operation of a 100μm-core Yb-doped rod-type photonic crystal fibre amplifier[J]. Proceedings of SPIE, 2010, 7580: 758006.

【23】Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859.

【24】Rser F, Eidam T, Rothhardt J, et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(24): 3495.

【25】Stutzki F, Jansen F, Otto H J, et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems[J]. Optica, 2014, 1(4): 233.

【26】Liu C H, Chang G Q, Litchinitser N, et al. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling[C]∥2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA. New York: IEEE. 2007: 1-2.

【27】Ma X Q, Zhu C, Hu I N, et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores[J]. Optics Express, 2014, 22(8): 9206.

【28】Ma X Q, Hu I N, Galvanauskas A. Propagation-length independent SRS threshold in chirally-coupled-core fibers[J]. Optics Express, 2011, 19(23): 22575-22581.

【29】Hu I N, Ma X, Zhu C, et al. Experimental demonstration of SRS suppression in chirally-coupled-core fibers[C]∥Advanced Solid State Lasers 2012, Jan. 29-Feb. 1, 2012, San Diego, California, USA. Washington D C: OSA, 2012: AT1A.3.

【30】Wong W S, Peng X, McLaughlin J M, et al. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Optics Letters, 2005, 30(21): 2855-2857.

【31】Dong L, McKay H A, Fu L B, et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding[J]. Optics Express, 2009, 17(11): 8962-8969.

【32】Alkeskjold T T, Laurila M, Scolari L, et al. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier[J]. Optics Express, 2011, 19(8): 7398-7409.

【33】Jansen F, Stutzki F, Otto H J, et al. The influence of index-depressions in core-pumped Yb-doped large pitch fibers[J]. Optics Express, 2010, 18(26): 26834-26842.

【34】Limpert J. Large-pitch fibers: pushing very large mode areas to highest powers[C]∥ 2012 International Conference on Fiber Optics and Photonics, Dec. 9-12, 2012, Chennai, India. Washington D C: OSA, 2012: T2A.1.

【35】Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light: Science & Applications, 2012, 1(4): e8.

【36】Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260.

【37】Peng X, Kim K, Mielke M, et al. Higher-order mode fiber enables high energy chirped-pulse amplification[J] Optics Express, 2013, 21(26): 32411-32416.

【38】Ramachandran S, Nicholson J W, Ghalmi S, et al. Light propagation with ultralarge modal areas in optical fibers[J]. Optics Letters, 2006, 31(12): 1797.

【39】Agrawal G. Nonlinear fiber optics[M]. 4th Edition, New York: Academic Press, 2007.

【40】Anderson D, Desaix M, Karlsson M, et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 1993, 10(7): 1185-1190.

【41】Sung H, Hwang J, Kim J H, et al. Investigations on pulse stretchers for chirped pulse amplification system[C]∥17th Opto-Electronics and Communications Conference, July 2-6, 2012, Busan, South Korea. New York: IEEE, 2012: 576-577.

【42】Sun D R, Song Y R, Zhang Z G, et al. Compare of characteristics between Martinez and Offner stretchers used in chirped pulse amplifier[J]. Acta Physica Sinica, 2003, 52(4): 870-874.
孙大睿, 宋晏蓉, 张志刚, 等. 用于飞秒脉冲放大器的马丁内兹展宽器与欧浮纳展宽器性能比较[J]. 物理学报, 2003, 52(4):870-874.

【43】Shah L, Fermann M. High-power ultrashort-pulse fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 552-558.

【44】Kane S, Squier J. Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor[J]. IEEE Journal of Quantum Electronics, 1995, 31(11): 2052-2057.

【45】Kuznetsova L, Wise F W, Kane S, et al. Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor[J]. Applied Physics B, 2007, 88(4): 515-518.

【46】Chauhan V, Bowlan P, Cohen J, et al. Single-diffraction-grating and grism pulse compressors[J]. Journal of the Optical Society of America B, 2010, 27(4): 619-624.

【47】Grüner-Nielsen L, Jakobsen D, Jespersen K G, et al. A stretcher fiber for use in fs chirped pulse Yb amplifiers[J]. Optics Express, 2010, 18(4): 3768-3773.

【48】Hao J Y, Liu B W, Song H Y, et al. Femtosecond fiber amplification system based on third-order dispersion compensation technique[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051404.
郝静宇, 刘博文, 宋寰宇, 等. 基于三阶色散补偿的光纤飞秒激光放大系统[J]. 激光与光电子学进展, 2018,55(5): 051404.

【49】Mortag D, Theeg T, Hausmann K, et al. Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system[J]. Optics Communications, 2012, 285(5): 706-709.

【50】Song H Y, Liu B W, Wen L, et al. Optimization of nonlinear compensation in a high-energy femtosecond fiber CPA system by negative TOD fiber[J]. IEEE Photonics Journal, 2017, 9(2): 1-10.

【51】Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15): 823-825.

【52】Galvanauskas A, Fermann M E, Harter D, et al. All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings[J]. Applied Physics Letters, 1995, 66(9): 1053-1055.

【53】eludeviius J, Danileviius R, Regelskis K. Optimization of pulse compression in a fiber chirped pulse amplification system by adjusting dispersion parameters of a temperature-tuned chirped fiber Bragg grating stretcher[J]. Journal of the Optical Society of America B, 2015, 32(5): 812-817.

【54】Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2013, 2(5/6): 315-340.

【55】Bouwmans G, Luan F, Knight J C, et al. Properties of hollow-core photonic bandgap fiber at 850 nm wavelength[J]. Optics Express, 2003, 11(14): 1613-1620.

【56】Galvanauskas A, Heaney A, Erdogan T, et al. Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits[C]∥Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 3-8, 1998, San Francisco, CA, USA. New York: IEEE 1998: 362.

【57】Efimov O M, Glebov L B, Smirnov V I, et al. Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass:US6586141[P]. 2000-01-04. https:∥patents.google.com/patent/US6586141B1/en.

【58】Glebov L B, Smirnov V, Rotari E, et al. Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses[J]. Optical Engineering, 2014, 53(5): 051514.

【59】Glebov L B, Glebova L N, Smirnov V I. Laser damage resistance of photo-thermo-refractive glass Bragg gratings[R]. Orlando: University of Central Florida, College of Optics and Photonics, 2004.

【60】Sun R Y, Jin D C, Tan F Z, et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating[J]. Optics Express, 2016, 24(20): 22806-22812.

【61】Sanchez D, Biegert J, Matras G, et al. High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping[J]. Proceedings of SPIE, 2017, 10082: 100820N.

【62】Chang G, Rever M, Smirnov V, et al. Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings[J]. Optics Letters, 2009. 34(19), 2952-2954.

【63】Bartuleviius T, Frankinas S, Michailovas A, et al. Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile[J]. Optics Express, 2017, 25(17): 19856-19862.

【64】Bartuleviius T, Veselis L, Madeikis K, et al. Compact high energy femtosecond fiber laser with a CFBG stretcher and CVBG compressor[C]∥2018 International Conference Laser Optics (ICLO), June 4-8, 2018, St. Petersburg, Russia. Washington D C: OSA, 2018: 17.

【65】Galvanauskas A. Ultrashort-pulse fiber amplifiers[M]∥Galvanauskas A. eds. Ultrafast Lasers. New York: CRC Press, 2002.

【66】Shah L, Liu Z, Hartl I, et al. High energy femtosecond Yb cubicon fiber amplifier[J]. Optics Express, 2005, 13(12): 4717-4722.

【67】Kalaycioglu H, Oktem B, 瘙塁enel C, et al. Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier[J]. Optics Letters, 2010, 35(7): 959.

【68】Wen L, Liu B W, Song H Y, et al. All polarization-maintaining fiber amplification system to generate high-power and high-quality femtosecond laser pulses[J]. Chinese Journal of Lasers, 2017, 44(2): 0201011.
文亮, 刘博文, 宋寰宇, 等. 高功率、高质量全保偏光纤飞秒激光放大系统[J]. 中国激光, 2017, 44(2): 0201011.

【69】Chen H W, Lim J, Huang S W, et al. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression[J]. Optics Express, 2012, 20(27): 28672.

【70】Lim J, Chen H W, Chang G, et al. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization[J]. Optics Express, 2013, 21(4): 4531.

【71】Liu W, Schimpf D N, Eidam T, et al. Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses[J]. Optics Letters, 2015, 40(2): 151-154.

【72】Song H Y, Liu B W, Li Y, et al. Practical 24-fs, 1-μJ, 1-MHz Yb-fiber laser amplification system[J]. Optics Express, 2017, 25(7): 7559.

【73】Hua Y, Chang G, Krtner F X, et al. Pre-chirp managed, core-pumped nonlinear PM fiber amplifier delivering sub-100-fs and high energy (10 nJ) pulses with low noise[J]. Optics Express, 2018, 26(5): 6427-6438.

【74】Tamura K, Nakazawa M. Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers[J]. Optics Letters, 1996, 21(1): 68-70.

【75】Fermann M E, Kruglov V I, Thomsen B C, et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 2000, 84(26): 6010-6013.

【76】Deng Y J , Chien C Y, Fidric B G, et al. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier[J]. Optics Letters, 2009, 34(22): 3469-3471.

【77】Wang S J, Liu B W, Gu C L, et al. Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping[J]. Optics Letters, 2013, 38(3): 296-298.

【78】Zhao J, Li W X, Wang C, et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation[J]. Optics Express, 2014, 22(26): 32214.

【79】Liu Y, Li W X, Luo D P, et al. Generation of 33 fs 935 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939.

【80】Wang S J, Chen W, Qin P, et al. Spectral and temporal breathing self-similar evolution in a fiber amplifier for low-noise transform-limited pulse generation[J]. Optics Letters, 2016, 41(22): 5286-5289.

【81】Finot C, Provost L, Petropoulos P, et al. Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device[J]. Optics Express, 2007, 15(3): 852-864.

【82】Pierrot S, Salin F. Amplification and compression of temporally shaped picosecond pulses in Yb-doped rod-type fibers[J]. Optics Express, 2013, 21(17): 20484-20496.

【83】Fu W, Tang Y X, McComb T S, et al. Limits of femtosecond fiber amplification by parabolic pre-shaping[J]. Journal of the Optical Society of America B, 2017, 34: A37-A42.

【84】Takada H, Torizuka K. Design and construction of a TW-class 12-fs Ti: sapphire chirped-pulse amplification system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 201-212.

【85】Chiba Y, Takada H, Torizuka K, et al. 65-fs Yb-doped fiber laser system with gain-narrowing compensation[J]. Optics Express, 2015, 23(5): 6809-6814.

【86】Takada H, Chiba Y, Yoshitomi D, et al. 41-fs, 35-nJ, green pulse generation from a yb-doped fiber laser system[J]. Optics Express, 2017, 25(3): 2115-2120.

【87】Gonthier F, Martineau L, Azami N, et al. High-power all-fiber components: the missing link for high-power fiber lasers[J]. Proceedings of SPIE, 2004, 5335: 266-276.

【88】Mukhopadhyay P K, Ozgoren K, Budunoglu I L, et al. All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 145-152.

【89】Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577.

【90】Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(5): 621.

【91】Klenke A, Hdrich S, Eidam T, et al. 22 GW peak-power fiber chirped-pulse- amplification system[J]. Optics Letters, 2014, 39(24): 6875-6878.

【92】Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439.

【93】Müeller M, Klenke A, Stark Henning, et al. 1.8-kW 16-channel ultrafast fiber laser system[J]. Proceedings of SPIE, 2018, 10512: 1051208.

【94】Heilmann A, Dortz J Le, Bellanger, et al. Towards coherent combination of 61 fiber amplifiers[C]∥Laser Congress 2017 (ASSL, LAC), OSA Technical Digest, Oct. 1-5, 2017, Nagoya, Japan. Washington D C: OSA: JM5A.14.

【95】Knight J C, Birks T A, Mangan J, et al. Multicore photonic crystal fibres[C]∥Technical Digest, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, May 23-28, 1992, Baltimore, MD, USA. New York: IEEE, 1992: 6496555.

【96】Otto H J, Klenke A, Jauregui C, et al. Scaling the mode instability threshold with multicore fibers[J]. Optics Letters, 2014, 39(9): 2680.

【97】Fang X H, Hu M L, Liu B W, et al. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Optics Letters, 2010, 35(14): 2326-2328.

【98】Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15: 328-336.

【99】Huang L L, Hu M L, Fang X H, et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber[J]. IEEE Photonics Journal, 2016, 8(3): 1-7.

【100】Zhou T, Sano T, Wilcox R. Coherent combination of ultrashort pulse beams using two diffractive optics[J]. Optics Letters, 2017, 42(21): 4422-4425.

【101】Zhou T, Du Q, Sano T, et al. Two-dimensional combination of eight ultrashort pulsed beams using a diffractive optic pair[J]. Optics Letters, 2018, 43(14): 3269-3272.

【102】Zhou S A, Ouzounov D G, Wise F W. Divided-pulse amplification of ultrashort pulses[C]∥2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA. Washington D C: OSA, 2007: 1-2.

【103】Hanna M, Guichard F, Zaouter Y, et al. Coherent combination of ultrafast fiber amplifiers[J]. Journal of Physics B, 2016, 49(6): 062004.

【104】Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253.

【105】Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped- and divided-pulse amplification system[J]. Optics Letters, 2013, 38(2): 106.

【106】Kienel M, Müller M, Klenke A, et al. Multidimensional coherent pulse addition of ultrashort laser pulses[J]. Optics Letters, 2015, 40(4): 522.

【107】Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343.

【108】Limpert J, Klenke A, Kienel M, et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 268-277.

【109】Zhang Z G. Coherent pulse stacking: an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001.
张志刚. 相干脉冲堆积:超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001.

【110】Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211.

【111】Breitkopf S, Wunderlich S, Eidam T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122(12): 297.

【112】Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442.

【113】Ruppe J, Chen S, Sheikhsofla M, et al. Multiplexed Coherent Pulse Stacking of 27 Pulses in a 4+1 GTI Resonator Sequence[C]∥2016 Advanced Solid State Lasers, Oct. 30-Nov. 3, 2016, Boston, MA,USA. Washington D C: OSA, 2016: AM4A.6.

【114】Pei H, Ruppe J, Chen S, et al. 10 mJ energy extraction from Yb-doped 85m core CCC fiber using coherent pulse stacking amplification of fs pulses[C]∥Proceedings of 2017 Advanced Solid State Lasers Conference, Oct. 1-5, 2017, Nagoya, Japan. Washington D C: OSA, 2017: AW4A.4.

【115】Wang X L, Zhou P, Su R T, et al Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201001.
王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44(2): 0201001.

【116】Wang Y B, Li J Y. Status and development tendency of high power ytterbium doped fibers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201009.
王一礴, 李进延. 高功率掺镱光纤的现状及发展趋势[J]. 中国激光, 2017, 44(2): 0201009.

【117】Maxwell G, Ponting B, Gebremichael E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth[J]. Crystals, 2017, 7(1): 12.

【118】Markovic V, Rohrbacher A, Hofmann P, et al. 160 W 800 fs Yb∶YAG single crystal fiber amplifier without CPA[J]. Optics Express, 2015, 23(20): 25883-25888.

【119】Lesparre F, Gomes J T, Délen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

【120】Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb∶YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944.

【121】Kuznetsov I, Mukhin I, Perevesentsev E, et al. High average and peak power laser based on Yb∶YAG amplifiers of advanced geometries for OPCPA pumping[C]∥CLEO Pacific Rim Conference 2018, OSA Technical Digest, July 29-Aug. 3, 2018, Hong Kong, China. Washington D C: OSA: Tu3A.4.

【122】Kuznetsov I, Mukhin I, Palashov O, et al. Thin-tapered-rod Yb∶YAG laser amplifier[J]. Optics Letters, 2016, 41(22): 5361-5364.

【123】Nisoli M, de Silvestri S, Svelto O, et al. Compression of high-energy laser pulses below 5 fs[J]. Optics Letters, 1997, 22(8): 522-524.

【124】Chen W, Song Y J, Jung K, et al. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser[J]. Optics Express, 2016, 24(2): 1347-1357.

【125】Song H Y, Liu B W, Chen W, et al. Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses[J]. Optics Express, 2018, 26(20): 26411-26421.

【126】Liu W, Li C, Zhang Z G, et al. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach[J]. Optics Express, 2016, 24(14): 15328-15340.

【127】Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]∥24th European Conference on Optical Communication. ECOC ''98 (IEEE Cat. no.98TH8398), Sept. 20-24, 1998, Madrid, Spain. New York: IEEE, 1998: 475-476.

【128】Fang Y C, Chaki T, Hung J H, et al. 1 MW peak-power subpicosecond optical pulse source based on a gain-switched laser diode[J]. Optics Letters, 2016, 41(17): 4028-4031.

【129】Fu W, Wright L G, Wise F W. High-power femtosecond pulses without a modelocked laser[J]. Optica, 2017, 4(7): 831-834.

引用该论文

Yan Dongyu,Liu Bowen,Song Huanyu,Li Yuan,Chu Yuxi,Chai Lu,Hu Minglie,Wang Chingyue. Research Status and Development Trend of High Power Femtosecond Fiber Laser Amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012

闫东钰,刘博文,宋寰宇,李源,储玉喜,柴路,胡明列,王清月. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF