首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508008--1)

光纤式相干拉曼散射成像光源研究进展

Advances in Fiber Laser Sources for Coherent Raman Scattering Microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

相干拉曼散射具有非侵入、无标记、化学特异性的优点,广泛用于生物组织成像、药代动力学等领域。主要介绍了光纤式相干拉曼散射(CRS)成像光源的实现方式及特点,总结了超连续谱展宽、孤子自频移和四波混频技术在提高双色超短脉冲输出功率、调谐范围、光谱分辨率方面的新进展。报道了基于四波混频的光参量振荡技术在产生可调谐双色超短脉冲方面的最新进展,采用全保偏光纤光路和光子晶体光纤,结合色散滤波和偏振操控技术,获得时间自同步、空间自重合、波长可调谐的双色超短脉冲,可实现脂类、蛋白和核酸的非侵入、无标记光谱检测与成像,为实现结构紧凑、使用方便、环境稳定的CRS提供了一个有效的技术途径。

Abstract

Coherent Raman scattering is extensively used in various fields, such as biomedical tissue imaging and pharmacokinetics, because of its significant advantages, including non-invasive detection, label-free operation, and chemical specificity. Further, we introduce the implementation and characteristics of the fiber laser sources for coherent Raman scattering (CRS) microscopy, and review the most recent advances in improving the output power, tuning range, and spectral resolution based on the dual-color synchronized ultrashort pulses via supercontinuum generation, soliton self-frequency shift, and four-wave mixing. Additionally, the latest advances in four-wave-mixing-based fiber optical parametric oscillators are introduced. Subsequently, the temporally synchronized, spatially overlapped, and wavelength-tunable dual-color ultrashort pulses are obtained based on dispersion filtering and polarization manipulation using the polarization-maintaining fiber and the photonic crystal fiber. Furthermore, the generated laser pulses can be used to achieve non-invasive as well as label-free spectroscopic detection and microscopic imaging for lipids, proteins, and nucleic acid, which could provide an effective methodology to realize compact, user-friendly, and environmentally stable coherent Raman scattering imaging.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:R318.51

DOI:10.3788/cjl201946.0508008

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(11727812,11504235)、上海高校特聘教授(东方学者)岗位计划(18JC1412000)

收稿日期:2018-12-12

修改稿日期:2019-01-28

网络出版日期:2019-02-19

作者单位    点击查看

郑世凯:上海理工大学光电信息与计算机工程学院, 上海 200093
杨康文:上海理工大学光电信息与计算机工程学院, 上海 200093
敖建鹏:复旦大学应用表面物理国家重点实验室和物理学系, 上海 200433
叶蓬勃:上海理工大学光电信息与计算机工程学院, 上海 200093
郝强:上海理工大学光电信息与计算机工程学院, 上海 200093
黄坤:上海理工大学光电信息与计算机工程学院, 上海 200093
季敏标:复旦大学应用表面物理国家重点实验室和物理学系, 上海 200433
曾和平:上海理工大学光电信息与计算机工程学院, 上海 200093华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062

联系人作者:郑世凯(kangwenyang@yeah.net)

【1】Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142-4145.

【2】Freudiger C W, Min W, Saar B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.

【3】Xu C, Wise F W. Recent advances in fibre lasers for nonlinear microscopy[J]. Nature Photonics, 2013, 7(11): 875-882.

【4】Shipp D W, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences[J]. Advances in Optics and Photonics, 2017, 9(2): 315-428.

【5】Müller J, Ibach W, Weishaupt K, et al. Confocal Raman microscopy[J]. Microscopy and Microanalysis, 2003, 9(S02): 1084-1085.

【6】Zhang C, Cheng J X. Perspective:coherent Raman scattering microscopy, the future is bright[J]. APL Photonics, 2018, 3(9): 090901.

【7】Sharping J E. Microstructure fiber based optical parametric oscillators[J]. Journal of Lightwave Technology, 2008, 26(14): 2184-2191.

【8】Kong D F, Jia D F, Feng D J, et al. Soliton self-frequency shift in optical fibers[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101902.
孔德飞, 贾东方, 冯德军, 等. 光纤中的孤子自频移效应[J]. 激光与光电子学进展, 2018, 55(10): 101902.

【9】Zhao L, Li C, Li Y, et al. Hundred-watt-level supercontinuum spectrum generation based on photonic crystal fiber[J]. Chinese Journal of Lasers, 2017, 44(2): 0201018.
赵磊, 李超, 黎玥, 等. 基于光子晶体光纤的百瓦超连续谱的产生[J]. 中国激光, 2017, 44(2): 0201018.

【10】He R Y, Xu Y K, Zhang L L, et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging[J]. Optica, 2017, 4(1): 44-47.

【11】Andresen E R, Birkedal V,Thgersen J, et al. Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift[J]. Optics Letters, 2006, 31(9): 1328-1330.

【12】Al-Kadry A, Rochette M. Maximized soliton self-frequency shift in non-uniform microwires by the control of third-order dispersion perturbation[J]. Journal of Lightwave Technology, 2013, 31(9): 1462-1467.

【13】Wang L, Jing J T. Theoretical research on optimization of signal-noise ratio based on cascaded four-wave mixing system[J]. Acta Optica Sinica, 2017, 37(7): 0719001.
王丽, 荆杰泰. 基于级联四波混频系统实现信噪比优化的理论研究[J]. 光学学报, 2017, 37(7): 0719001.

【14】Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-stokes Raman microscope[J]. Optics Letters, 1982, 7(8): 350-352.

【15】Cheng J X, Volkmer A, Xie X S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy[J]. Journal of the Optical Society of America B, 2002, 19(6): 1363-1375.

【16】Wurpel G W H, Schins J M, Müller M. Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2002, 27(13): 1093-1095.

【17】Dudovich N, Oron D, Silberberg Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy[J]. Nature, 2002, 418(6897): 512-514.

【18】Nodop D, Jauregui C, Schimpf D, et al. Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber[J]. Optics Letters, 2009, 34(22): 3499-3501.

【19】Lavoute L, Knight J C, Dupriez P, et al. High power red and near-IR generation using four wave mixing in all integrated fibre laser systems[J]. Optics Express, 2010, 18(15): 16193-16205.

【20】Mitschke F M, Mollenauer L F. Discovery of the soliton self-frequency shift[J]. Optics Letters, 1986, 11(10): 659-661.

【21】Gordon J P. Theory of the soliton self-frequency shift[J]. Optics Letters, 1986, 11(10): 662-664.

【22】Baumgartl M, Gottschall T, Abreu-Afonso J, et al. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing[J]. Optics Express, 2012, 20(19): 21010-21018.

【23】Ozeki Y, Umemura W, Sumimura K, et al. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses[J]. Optics Letters, 2012, 37(3): 431-433.

【24】Lamb E S, Lefrancois S, Ji M B, et al. Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2013, 38(20): 4154-4157.

【25】Gottschall T, Meyer T, Baumgartl M, et al. Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy[J]. Optics Express, 2014, 22(18): 21921-21928.

【26】Brinkmann M, Janfrüchte S, Hellwig T, et al. Electronically and rapidly tunable fiber-integrable optical parametric oscillator for nonlinear microscopy[J]. Optics Letters, 2016, 41(10): 2193-2196.

【27】Gottschall T, Meyer T, Jauregui C, et al. All-fiber optical parametric oscillator for bio-medical imaging applications[J]. Proceedings of SPIE, 2017, 10083: 100831E.

【28】Shou J W, Ozeki Y. Dual-polarization hyperspectral stimulated Raman scattering microscopy[J]. Applied Physics Letters, 2018, 113(3): 033701.

【29】Gottschall T, Meyer T,Baumgartl M, et al. Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy[J]. Laser & Photonics Reviews, 2015, 9(5): 435-451.

【30】Kano H, Hamaguchi H. Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber[J]. Applied Physics B, 2005, 80(2): 243-246.

【31】Porquez J G, Cole R A, Tabarangao J T, et al. Brighter CARS hypermicroscopy via “spectral surfing” of a Stokes supercontinuum[J]. Optics Letters, 2017, 42(12): 2255-2258.

【32】Freudiger C W, Yang W L, Holtom G R, et al. Stimulated Raman scattering microscopy with a robust fibre laser source[J]. Nature Photonics, 2014, 8(2): 153-159.

【33】Liu S L, Liu W, Chen D N, et al. Research on coherent anti-Stokes Raman scattering microscopy[J]. Acta Physica Sinica, 2016, 65(6): 064204.
刘双龙, 刘伟, 陈丹妮, 等. 相干反斯托克斯拉曼散射显微成像技术研究[J]. 物理学报, 2016, 65(6): 064204.

【34】Wang K, Wang J Q, Qiu P. Peak power fluctuation due to timing jitter in synchronized time-lens source for coherent Raman scattering microscopy[J]. Optics Express, 2016, 24(9): 9645-9650.

【35】He R Y, Liu Z P, Xu Y K, et al. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line[J]. Optics Letters, 2017, 42(4): 659-662.

【36】Yin J, Lin Z Y, Qu J L, et al. Coherent anti-Stokes Raman scattering microscopic imaging technique[J]. Chinese Journal of Lasers, 2009, 36(10): 2477-2484.
尹君, 林子扬, 屈军乐, 等. 相干反斯托克斯拉曼散射显微成像技术[J]. 中国激光, 2009, 36(10): 2477-2484.

【37】Zhao Y, Zhang S, Zhang Z B, et al. Molecular vibrational dynamics in ethanol studied by femtosecond CARS[J]. Optics Communications, 2015, 334(28): 319-322.

【38】Ji M B, Arbel M, Zhang L L, et al. Label-free imaging of amyloid plaques in Alzheimer′s disease with stimulated Raman scattering microscopy[J]. Science Advances, 2018, 4(11): eaat7715.

【39】Jiang J F, Guo H L, Liu T G, et al. Research on all-fiber narrow bandwidth picosecond pulse seed source for CARS excitation source[J]. Chinese Journal of Lasers, 2015, 42(2): 0205004.
江俊峰, 郭洪龙, 刘铁根, 等. 用于CARS激发源的全光纤窄线宽皮秒脉冲种子源的研究[J]. 中国激光, 2015, 42(2): 0205004.

【40】Yuan J H, Zhou G Y, Xia C M, et al. Degenerate four-wave mixing-based light source for CARS microspectroscopy[J]. IEEE Photonics Technology Letters, 2016, 28(7): 763-766.

【41】Chen K, Wu T, Wei H Y, et al. Background-free coherent anti-stokes Raman spectroscopy by all-fiber-generated dual-soliton as stokes pulse[C]∥CLEO: Science and Innovations 2016, 5-10 June, 2016, San Jose, California, USA. OSA, SF10: SF10.3.

【42】Wang K, Wang Y X, Liang R F, et al. Contributed review: a new synchronized source solution for coherent Raman scattering microscopy[J]. Review of Scientific Instruments, 2016, 87(7): 071501.

【43】Zhao J, Hu M L, Fan J T, et al. Research progress of nonlinear frequency conversion technology based on fiber femtosecond lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001.
赵君, 胡明列, 范锦涛, 等. 光纤飞秒激光抽运的非线性光学频率变换研究进展[J]. 激光与光电子学进展, 2018, 55(4): 040001.

【44】Fu Y, Wang H F, Shi R Y, et al. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy[J]. Optics Express, 2006, 14(9): 3942-3951.

【45】Yang K W, Jiang J S, Guo Z R, et al. Tunable femtosecond laser from 965 to 1025 nm in fiber optical parametric oscillator[J]. IEEE Photonics Technology Letters, 2018, 30(7): 607-610.

【46】Zlobina E A, Kablukov S I, Babin S A. Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser[J]. Journal of the Optical Society of America B, 2012, 29(8): 1959-1967.

【47】Chemnitz M, Baumgartl M, Meyer T, et al. Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy[J]. Optics Express, 2012, 20(24): 26583-26595.

【48】Yang K W, Wu Y X, Jiang J S, et al. Fiber optical parametric oscillator and amplifier for CARS spectroscopy[J]. IEEE Photonics Technology Letters, 2018, 30(10): 967-970.

【49】Yang K W, Ye P B, Zheng S K, et al. Polarization switch of four-wave mixing in a tunable fiber optical parametric oscillator[J]. Optics Express, 2018, 26(3): 2995-3003.

【50】Zhang L, Yang S G, Wang X J, et al. Photonic crystal fiber based wavelength-tunable optical parametric amplifier and picosecond pulse generation[J]. IEEE Photonics Journal, 2014, 6(5): 1501908.

【51】Yang K W, Zheng S K, Wu Y X, et al. Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy[J]. Optics Express. 2018, 26(13): 17519-17528.

引用该论文

Zheng Shikai,Yang Kangwen,Ao Jianpeng,Ye Pengbo,Hao Qiang,Huang Kun,Ji Minbiao,Zeng Heping. Advances in Fiber Laser Sources for Coherent Raman Scattering Microscopy[J]. Chinese Journal of Lasers, 2019, 46(5): 0508008

郑世凯,杨康文,敖建鹏,叶蓬勃,郝强,黄坤,季敏标,曾和平. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 0508008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF