首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508010--1)

全光纤超快矢量光场的产生与研究进展

Generation and Research Progress of All-Fiber Ultrafast Vector Optical Fields

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对模式选择耦合器、声致光纤光栅等全光纤模式转换器件的工作原理进行总结,并结合锁模光纤激光器和模式转换器件的优势,简单高效地产生了超快矢量光束和涡旋光束,得到的超快高阶模式激光具有峰值功率高、模式纯度高等特点。实验证明了模式转换器件的快速响应特性和宽带模式转换特性,并指出了其未来的发展方向和应用前景。

Abstract

This paper summarizes the working principles of all-fiber mode converters such as mode selective couplers and acoustically-induced fiber gratings. Combining the advantages of a mode-locked fiber laser and mode converters is a simple and effective method to generate ultrafast vector beams and optical vortex beams. The generated ultrafast laser with high-order modes (HOMs) has high peak powers and high mode purity. The experimental results demonstrate that the fast response and broadband mode conversion characteristics of these mode converters. In addition, the future development directions and application prospects of ultrafast HOMs are discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248;TN253

DOI:10.3788/cjl201946.0508010

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(91750108)、上海市国际科技合作基金项目(16520720900)

收稿日期:2018-12-12

修改稿日期:2019-02-18

网络出版日期:2019-03-07

作者单位    点击查看

王腾:上海大学特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
陆佳峰:上海大学特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
黄译平:上海大学特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
孟令浩:上海大学特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
石帆:上海大学特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
曾祥龙:上海大学特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444

联系人作者:曾祥龙(zenglong@shu.edu.cn)

【1】Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

【2】Chen J, Wan C H, Zhan Q W. Vectorial optical fields: recent advances and future prospects[J]. Science Bulletin, 2018, 63(1): 54-74.

【3】Pan Y, Ding J P, Wang H T. Manipulation on novel vector optical fields: introduction, advances and applications[J]. Acta Optica Sinica, 2019, 39(1): 0126001.
潘岳, 丁剑平, 王慧田. 新型矢量光场调控: 简介、进展与应用[J]. 光学学报, 2019, 39(1): 0126001.

【4】Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185.

【5】Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics & Photonics, 2011, 3(2):161-204.

【6】Wang J. Advances in communications using optical vortices[J]. Photonics Research, 2016, 4(5): B14-B28.

【7】Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362.

【8】Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106.

【9】Fickler R, Campbell G, Buchler B, et al. Quantum entanglement of angular momentum states with quantum numbers up to 10,010[J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 13642-13647.

【10】Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348.

【11】Béché A, Juchtmans R, Verbeeck J. Efficient creation of electron vortex beams for high resolution STEM imaging[J]. Ultramicroscopy, 2017, 178: 12-19.

【12】Hnatovsky C, Shvedov V G, Krolikowski W, et al. Materials processing with a tightly focused femtosecond laser vortex pulse[J]. Optics Letters, 2010, 35(20): 3417-3419.

【13】Toyoda K, Takahashi F, Takizawa S, et al. Transfer of light helicity to nanostructures[J]. Physical Review Letters, 2013, 110(14): 143603.

【14】Takahashi F, Miyamoto K, Hidai H, et al. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle[J]. Scientific Reports, 2016, 6: 21738.

【15】Li J P, Liu J, Gao D C, et al. Manipulation and transmission technologies of optical field for multidimensional multiplexing optical fiber communication[J]. Acta Optica Sinica, 2019, 39(1): 0126008.
李建平, 刘洁, 高社成, 等. 面向光纤通信多维复用的光场调控与传输技术[J]. 光学学报, 2019, 39(1): 0126008.

【16】Lin D, Xia K G, Li R X, et al. Radially polarized and passively Q-switched fiber laser[J]. Optics Letters, 2010, 35(21): 3574-3576.

【17】Lin D, Xia K G, Li J L, et al. Efficient, high-power, and radially polarized fiber laser[J]. Optics Letters, 2010, 35(13): 2290-2292.

【18】Koyama M, Hirose T, Okida M, et al. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier[J]. Optics Express, 2011, 19(2): 994-999.

【19】Sun B, Wang A T, Xu L X, et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating[J]. Optics Letters, 2012, 37(4): 464-466.

【20】Dong J L, Chiang K S. Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG[J]. IEEE Photonics Technology Letters, 2014, 26(17): 1766-1769.

【21】Zhang W D, Huang L G, Wei K Y, et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave[J]. Optics Express, 2016, 24(10): 10376-10384.

【22】Zhang W D, Li X, Bai J H, et al. Generation and application of fiber-based structured light field[J]. Acta Optica Sinica, 2019, 39(1): 0126003.
张文定, 李鑫, 白家浩, 等. 光纤结构光场产生及应用[J]. 光学学报, 2019, 39(1): 0126003.

【23】Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5/6): 321-327.

【24】Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536.

【25】Jiang Y C, Ren G B, Lian Y D, et al. Tunable orbital angular momentum generation in optical fibers[J]. Optics Letters, 2016, 41(15): 3535-3538.

【26】Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 2015, 40(18): 4376-4379.

【27】Allen L, Padgett M J, Babiker M. IV The orbital angular momentum of light[M]∥Allen L, Padgett M J, Babiker M. eds. Progress in optics. Amsterdam: Elsevier, 1999: 291-372.

【28】Ismaeel R, Lee T, Oduro B, et al. All-fiber fused directional coupler for highly efficient spatial mode conversion[J]. Optics Express, 2014, 22(10): 11610-11619.

【29】Wang T, Wang F, Shi F, et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler[J]. Journal of Lightwave Technology, 2017, 35(11): 2161-2166.

【30】Xiao Y L, Liu Y G, Wang Z, et al. Design and experimental study of mode selective all-fiber fused mode coupler based on few mode fiber[J]. Acta Physica Sinica, 2015, 64(20): 204207.
肖亚玲, 刘艳格, 王志, 等. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究[J]. 物理学报, 2015, 64(20): 204207.

【31】Wang F, Shi F, Wang T, et al. Method of generating femtosecond cylindrical vector beams using broadband mode converter[J]. IEEE Photonics Technology Letters, 2017, 29(9): 747-750.

【32】Wang T, Wang F, Shi F, et al. Femtosecond mode-locked fiber laser with cylindrical vector beams using mode selective coupler[C]∥Asia Communications and Photonics Conference, Nov. 2-5, 2016, Wuhan, China. Washington D C: Optical Society of America, 2016: ATh3A. 3.

【33】Pidishety S, Srinivasan B, Brambilla G. All-fiber fused coupler for stable generation of radially and azimuthally polarized beams[J]. IEEE Photonics Technology Letters, 2017, 29(1): 31-34.

【34】Park K J, Song K Y, Kim Y K, et al. Broadband mode division multiplexer using all-fiber mode selective couplers[J]. Optics Express, 2016, 24(4): 3543-3549.

【35】Wang T, Wang F, Shi F, et al. All-fiber mode-locked vortex laser with a broadband mode coupler[C]∥Optical Fiber Communication Conference, Mar. 19-23, 2017, Los Angeles, California, USA. Washington D C: Optical Society of America, 2017: Tu3J. 2.

【36】Huang Y P, Shi F, Wang T, et al. High-order mode Yb-doped fiber lasers based on mode-selective couplers[J]. Optics Express, 2018, 26(15): 19171-19181.

【37】Birks T A, Russell P S J, Culverhouse D O. The acousto-optic effect in single-mode fiber tapers and couplers[J]. Journal of Lightwave Technology, 1996, 14(11): 2519-2529.

【38】Lim S D, Park H C, Hwang I K, et al. Combined effects of optical and acoustic birefringence on acousto-optic mode coupling in photonic crystal fiber[J]. Optics Express, 2008, 16(9): 6125-6133.

【39】Huang L G, Zhang W D, Li Y J, et al. Acousto-optic tunable bandpass filter based on acoustic-flexural-wave-induced fiber birefringence[J]. Optics Letters, 2018, 43(21): 5431-5434.

【40】Wei K Y, Zhang W D, Huang L G, et al. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions[J]. Optics Express, 2017, 25(3): 2733-2741.

【41】Lu J F, Meng L H,Shi F, et al. Dynamic mode-switchable optical vortex beams using acousto-optic mode converter[J]. Optics Letters, 2018, 43(23): 5841-5844.

【42】Zhang X C, Zhang W D, Li C Y, et al. All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating[J]. Journal of Optics, 2018, 20(7): 075608.

【43】Zhang W D, Huang L G, Wei K Y, et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion[J]. Optics Letters, 2016, 41(21): 5082-5085.

【44】Mao D, Feng T X, Zhang W D, et al. Ultrafast all-fiber based cylindrical-vector beam laser[J]. Applied Physics Letters, 2017, 110(2): 021107.

【45】Mao D, He Z W, Lu H, et al. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers[J]. Optics Letters, 2018, 43(7): 1590-1593.

【46】Sun B, Wang A T, Gu C, et al. Mode-locked all-fiber laser producing radially polarized rectangular pulses[J]. Optics Letters, 2015, 40(8): 1691-1694.

【47】Chen R S, Sun F L, Yao J N, et al. Mode-locked all-fiber laser generating optical vortex pulses with tunable repetition rate[J]. Applied Physics Letters, 2018, 112(26): 261103.

【48】Zhou Y, Lin J, Zhang X Q, et al. Self-starting passively mode-locked all fiber laser based on carbon nanotubes with radially polarized emission[J]. Photonics Research, 2016, 4(6): 327-330.

【49】Wan H D, Wang J, Zhang Z X, et al. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler[J]. Optics Express, 2017, 25(10): 11444-11451.

【50】Cai Y, Wang J, Zhang J J, et al. Generation of cylindrical vector beams in a mode-locked fiber laser using a mode-selective coupler[J]. Chinese Optics Letters, 2018, 16(1): 010602.

【51】Huang P, Cai Y, Wang J, et al. Multiwavelength mode-locked cylindrical vector beam fiber laser based on mode selective coupler[J]. Laser Physics Letters, 2017, 14(10): 105103.

【52】Zhang Z X, Cai Y, Wang J, et al. Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-6.

【53】Guo Y C, Liu Y G, Wang Z, et al. All-fiber mode-locked cylindrical vector beam laser using broadband long period grating[J]. Laser Physics Letters, 2018, 15(8): 085108.

【54】Lin D, Baktash N, Berendt M, et al. Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping[J]. Optics Letters, 2017, 42(9): 1740-1743.

【55】Huang K, Zeng J, Gan J W, et al. Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser[J]. Optics Letters, 2018, 43(16): 3933-3936.

【56】Wang J, Wan H D, Cao H, et al. A 1-μm Cylindrical vector beam fiber ring laser based on a mode selective coupler[J]. IEEE Photonics Technology Letters, 2018, 30(9): 765-768.

【57】Wan H D, Wang J, Shen Z P, et al. All fiber actively Q-switched Yb-doped laser with radially/azimuthally polarized beam generation[J]. Laser Physics Letters, 2018, 15(9): 095102.

【58】Wan H D, Wang J, Zhang Z X, et al. Passively mode-locked ytterbium-doped fiber laser with cylindrical vector beam generation based on mode selective coupler[J]. Journal of Lightwave Technology, 2018, 36(16): 3403-3407.

【59】Lu J, Meng L, Shi F, et al. A mode locked fiber laser with switchable high-order modes using intracavity acousto-optic mode converter[C]∥Optical Fiber Communication Conference, Mar. 3-7, 2019, San Diego, California USA. Washington D C: Optical Society of America, 2019: W3C. 3.

【60】Shi F, Cheng P K, Huang Y P, et al. Mode-locked all-fiber laser emitting two-color high-order transverse mode[J]. IEEE Photonics Technology Letters, 2019, 31(7): 497-500.

【61】Shen Y, Ren G B, Yang Y G, et al. Generation of the tunable second-order optical vortex beams in narrow linewidth fiber laser[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1659-1662.

【62】Yang A, Wang T, Zheng J Q, et al. A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator[J]. Laser Physics Letters, 2019, 16(2): 025104.

【63】Zheng J Q, Yang A, Wang T, et al. Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator[J]. Photonics Research, 2018, 6(5): 396-402.

【64】Zhao Y H, Wang T X, Mou C B, et al. All-fiber vortex laser generated with few-mode long-period gratings[J]. IEEE Photonics Technology Letters, 2018, 30(8): 752-755.

【65】Song J X, Xu H Y, Wu H S, et al. High power narrow linewidth LP11 mode fiber laser using mode-selective FBGs[J]. Laser Physics Letters, 2018, 15(11): 115101.

【66】Zhou N, Liu J, Wang J. Reconfigurable and tunable twisted light laser[J]. Scientific Reports, 2018, 8: 11394.

【67】Chen R S, Wang J H, Zhang X Q, et al. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating[J]. Optics Letters, 2018, 43(4): 755-758.

【68】Shen Y, Ren G B, Yang Y G, et al. Switchable narrow linewidth fiber laser With LP11transverse mode output[J]. Optics & Laser Technology, 2018, 98: 1-6.

【69】Yao S Z, Yang Y G, Shen Y, et al. All-fiber single-longitudinal-mode narrow linewidth fiber ring laser with cylindrical vector beam output[J]. Laser Physics Letters, 2018, 15(11): 115107.

【70】Zhou Y, Yan K, Chen R S, et al. Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating[J]. Applied Physics Letters, 2017, 110(16): 161104.

【71】Fu C L, Liu S, Bai Z Y, et al. Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen-oxygen flame[J]. Journal of Lightwave Technology, 2018, 36(9): 1683-1688.

【72】Fu C L, Liu S, Wang Y, et al. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber[J]. Optics Letters, 2018, 43(8): 1786-1789.

【73】Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.

【74】Wang T, Yang A, Shi F, et al. High-order mode lasing in all-FMF laser cavities[J]. Photonics Research, 2019, 7(1): 42-49.

【75】Han S M, Yang K, Wang Z H,et al. Multimode oscillation Q-switched erbium-doped fiber laser with a few-mode fiber cavity[J]. Optoelectronics Letters, 2018, 14(6): 417-420.

【76】Wang T, Shi F, Huang Y P, et al. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams[J]. Optics Express, 2018, 26(9): 11850-11858.

【77】Qin H Q, Xiao X S, Wang P, et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985.

【78】Heng X B, Gan J L, Zhang Z S, et al. Transverse mode switchable all-fiber Brillouin laser[J]. Optics Letters, 2018, 43(17): 4172-4175.

【79】Zhang Y M, Li H X, Dai C S, et al. All-fiber high-order mode laser using a metal-clad transverse mode filter[J]. Optics Express, 2018, 26(23): 29679-29686.

【80】Li H X, Yan K, Zhang Y M, et al. Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity[J]. Applied Physics Express, 2018, 11(12): 122502.

引用该论文

Wang Teng,Lu Jiafeng,Huang Yiping,Meng Linghao,Shi Fan,Zeng Xianglong. Generation and Research Progress of All-Fiber Ultrafast Vector Optical Fields[J]. Chinese Journal of Lasers, 2019, 46(5): 0508010

王腾,陆佳峰,黄译平,孟令浩,石帆,曾祥龙. 全光纤超快矢量光场的产生与研究进展[J]. 中国激光, 2019, 46(5): 0508010

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF