首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508021--1)

强飞秒激光在氟化钙晶体中产生的超连续谱

Supercontinuum Generation in Calcium Fluoride Crystals Using High-Intensity Femtosecond Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实验研究了不同入射激光能量和晶体取向条件下,强飞秒激光在氟化钙晶体中成丝产生的超连续谱。实验发现,由于晶体中存在光强钳制效应,在一定入射激光能量范围内,超连续谱的最大蓝移截止波长为300 nm,且不随能量发生变化。同时发现,该最大蓝移截止波长不依赖于晶体取向的变化,但超连续谱的强度将随晶体的取向发生明显变化。

Abstract

In this study, the supercontinuum generation in calcium fluoride (CaF2) crystals are measured during high-intensity femtosecond laser filamentation under different incident laser energies and various crystal orientations. The experimental results show that the maximum blue-shifted cut-off wavelength of the supercontinuum spectrum remains constant at 300 nm for a broad range of incident laser energies because of the intensity clamping effect. Moreover, the maximum blue-shifted cut-off wavelength is also independent on the crystal orientation, but the intensity of supercontinuum significantly varies with the crystal orientation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/cjl201946.0508021

所属栏目:“超快激光非线性光学”专题

基金项目:国家重大科研仪器研制项目(11527807)

收稿日期:2019-01-02

修改稿日期:2019-03-04

网络出版日期:2019-03-11

作者单位    点击查看

李子熙:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071中国科学院大学, 北京 100049
龚成:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
华林强:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
柳晓军:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071

联系人作者:龚成(gongcheng@wipm.ac.cn); 柳晓军(xjliu@wipm.ac.cn);

【1】Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/3/4): 47-189.

【2】Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.

【3】Brodeur A, Chin S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media[J]. Journal of the Optical Society of America B, 1999, 16(4): 637-650.

【4】Liu W W. Intensity clamping during femtosecond laser filamentation[J]. Chinese Journal of Physics, 2014, 52(1): 465-489.

【5】Frolov S A, Trunov V I, Leshchenko V E, et al. Multi-octave supercontinuum generation with IR radiation filamentation in transparent solid-state media[J]. Applied Physics B, 2016, 122(5): 124.

【6】Xu F, Liu J S, Li R X, et al. Nonlinear X-wave formation and conical emission at different powers of a femtosecond laser pulse in water[J]. Optics Communications, 2007, 275(2): 433-439.

【7】Ionin A A, Seleznev L V, Sunchugasheva E S. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses[J]. Laser Physics, 2015, 25(3): 033001.

【8】Kasparian J, Rodriguez M, Méjean G, et al. White-light filaments for atmospheric analysis[J]. Science, 2003, 301(5629): 61-64.

【9】Graydon O. Lightning control by lasers[J]. Nature Photonics, 2009, 3(3): 120-121.

【10】Henin S, Petit Y, Rohwetter P, et al. Field measurements suggest the mechanism of laser-assisted water condensation[J]. Nature Communications, 2011, 2: 456.

【11】Ju J J, Liu J S, Wang C, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 2012, 37(7): 1214-1216.

【12】Zhao J Y, Liu W W, Li S C, et al. Clue to a thorough understanding of terahertz pulse generation by femtosecond laser filamentation[J]. Photonics Research, 2018, 6(4): 296-306.

【13】D′Amico C, Houard A, Franco M, et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 2007, 98(23): 235002.

【14】Yang Q B, Chen Z P, Yang T, et al. Surface wettability of different micro-textured YG6 processed by femtosecond laser[J]. Laser and Optoelectronics Progress, 2018, 55(9): 091404.
杨奇彪, 陈中培, 杨涛, 等. 飞秒激光加工YG6不同微织构表面浸润性研究[J]. 激光与光电子学进展, 2018, 55(9): 091404.

【15】Zhang Y J, Song H Y, Liu H Y, et al. Fabrication of millimeter-scaled holes by femtosecond laser filamentation[J]. Chinese Journal of Lasers, 2017, 44(4): 0402012.
张艳杰, 宋海英, 刘海云, 等. 飞秒激光成丝制备毫米级深孔[J]. 中国激光, 2017, 44(4): 0402012.

【16】Théberge F, Akzbek N, Liu W, et al. Conical emission and induced frequency shift of third-harmonic generation during ultrashort laser filamentation in air[J]. Optics Communications, 2007, 276(2): 298-304.

【17】Li S Y, Chen A M, Jiang Y F, et al. “Long-lived” luminous effects in femtosecond laser filament[J]. Optics Communications, 2018, 426(2): 105-109.

【18】Corkum P B, Rolland C, Srinivasanrao-Rao T. Supercontinuum generation in gases[J]. Physics Review Letters, 1986, 57(18): 2268-2271.

【19】Jimbo T, Caplan V L, Li Q X, et al. Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations[J]. Optics Letters, 1987, 17(7): 477-479.

【20】Alfano R R, Shapiro S L. Emission in the region 4000 to 7000  via four-photon coupling in glass[J]. Physical Review Letters, 1970, 24(11): 584-587.

【21】Raytchev M, Pandurski E, Buchvarov I, et al. Bichromophoric interactions and time-dependent excited state mixing in pyrene derivatives. A femtosecond broad-band pump-probe study[J]. The Journal of Physical Chemistry A, 2003, 107(23): 4592-4600.

【22】Baltuka A, Takao F J, Kobayashi T. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control[J]. Optics Letters, 2002, 27(5): 306-308.

【23】Tzankov P, Fiebig T, Buchvarov I. Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification[J]. Applied Physics Letters, 2003, 82(4): 517-519.

【24】Indra L, Batysta F, Híbek P, et al. Picosecond pulse generated supercontinuum as a stable seed for OPCPA[J]. Optics Letters, 2017, 42(4): 843-846.

【25】Alfano R R. The supercontinuum laser source[M]. 3rd ed. New York: Springer, 2016.

【26】Gaeta A L. Catastrophic collapse of ultrashort pulses[J]. Physical Review Letters, 2000, 84(16): 3582-3585.

【27】Ward H, Bergé L. Temporal shaping of femtosecond solitary pulses in photoionized media[J]. Physical Review Letters, 2003, 90(5): 053901.

【28】Kandidov V P, Kosareva O G, Golubtsov I S, et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)[J]. Applied Physics B, 2003, 77(2/3): 149-165.

【29】Rothenberg J E. Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses[J]. Optics Letters, 1992, 17(19): 1340-1342.

【30】Bloembergen N. The influence of electron plasma formation on superbroadening in light filaments[J]. Optics Communications, 1973, 8(4): 285-288.

【31】Kolesik M, Katona G, Moloney J V, et al. Theory and simulation of supercontinuum generation in transparent bulk media[J]. Applied Physics B, 2003, 77(2/3): 185-195.

【32】Huber R, Satzger H, Zinth W, et al. Noncollinear optical parametric amplifiers with output parameters improved by the application of a white light continuum generated in CaF2[J]. Optics Communications, 2001, 194(4/5/6): 443-448.

【33】Tzankov P, Buchvarov I, Fiebig T. Broadband optical parametric amplification in the near UV-VIS[J]. Optics Communications, 2002, 203(1/2): 107-113.

【34】Buchvarov I, Trifonov A, Fiebig T. Toward an understanding of white-light generation in cubic media: polarization properties across the entire spectral range[J]. Optics Letters, 2007, 32(11): 1539-1541.

【35】Kartazaev V, Alfano R R. Polarization properties of SC generated in CaF2[J]. Optics Communications, 2008, 281(3): 463-468.

【36】Megerle U, Pugliesi I, Schriever C, et al. Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground[J]. Applied Physics B, 2009, 96(2/3): 215-231.

【37】Liu W, Petit S, Becker A, et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics Communications, 2002, 202(1/2/3): 189-197.

【38】Pogatshnik G J, Hamilton D S. Excited-state photoionization of Ce+ ions in Ce+∶CaF2[J]. Physical Review B, 1987, 36(16): 8251-8257.

【39】Scouler W J, Smakula A. Coloration of pure and doped calcium fluoride crystals at 20 ℃ and -190 ℃[J]. Physical Review, 1960, 120(4): 1154-1161.

【40】Faccio D, Porras M A, Dubietis A, et al. Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses[J]. Physical Review Letters, 2006, 96(19): 193901.

【41】Gong C, Li Z X, Hua L Q, et al. Angle-resolved conical emission spectra from filamentation in a solid with an Airy pattern and a Gaussian laser beam[J]. Optics Letters, 2016, 41(18): 4305-4308.

【42】Luther G G, Wright E M, Newell A C, et al. Short-pulse conical emission and spectral broadening in normally dispersive media[J]. Optics Letters, 1994, 19(11): 789-791.

【43】Nagura C, Suda A, Kawano H, et al. Generation and characterization of ultrafast white-light continuum in condensed media[J]. Applied Optics, 2002, 41(18): 3735-3742.

【44】Brodeur A, Chin S L. Band-gap dependence of the ultrafast white-light continuum[J].Physical Review Letters, 1998, 80(20): 4406-4409.

【45】DeSalvo R, Sheik-Bahae M, Said A A, et al. Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals[J]. Optics Letters, 1993, 18(3): 194-196.

引用该论文

Li Zixi,Gong Cheng,Hua Linqiang,Liu Xiaojun. Supercontinuum Generation in Calcium Fluoride Crystals Using High-Intensity Femtosecond Laser[J]. Chinese Journal of Lasers, 2019, 46(5): 0508021

李子熙,龚成,华林强,柳晓军. 强飞秒激光在氟化钙晶体中产生的超连续谱[J]. 中国激光, 2019, 46(5): 0508021

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF