首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508023--1)

非柱对称飞秒矢量光在钨表面制备弧形周期条纹结构

Fabrication of Periodic Curved Ripple Structures on Tungsten Surface Using Femtosecond Non-Cylindrical Vector Beam

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将两个相位光栅分别作为分束和合束元件,生成了偏振态连续变化的非柱对称飞秒矢量光束。通过调节合束相位光栅的波矢方向,即可实现标量光到矢量光的转变,以及矢量光偏振态的调节。利用非柱对称飞秒矢量光在金属钨表面制备了由弧形条纹组成的二维周期性结构,在相邻弧形条纹偏移量(水平方向的周期)保持 560 nm不变的情况下,通过调节飞秒矢量光的偏振态分布,可使弧形条纹的底长(竖直方向的周期)逐渐减小至4 μm。微区反射谱测量表明:弧形周期条纹的存在明显减小了可见至近红外波段的反射率,且反射率随弧形条纹底长的减小而增大。飞秒激光的辐照没有改变金属钨表面的物质组分,因此,反射率的改变完全是由钨表面的二维周期性结构导致的。

Abstract

Two phase gratings are used as beam splitter and combiner to generate a femtosecond non-cylindrical vector beam exhibiting continuously varying polarizations. Further, by adjusting the orientation of the grating vector of the beam combiner, a scalar beam can be transitioned to a vector beam, and the polarization distribution of the femtosecond laser beam can be modulated. Two-dimensional periodic surface structures comprising curved ripples are fabricated on a tungsten surface using a femtosecond non-cylindrical vector beam. By adjusting the beam polarization distribution, the bottom length of the curved ripples, i.e., the period along the vertical direction, can be decreased to 4 μm while maintaining the horizontal period at 560 nm. The microreflectance spectral measurements denote that the periodic ripples significantly reduce the reflectivity in the visible and near-infrared ranges and that the reflectivity increases as the vertical period of the curved ripples decreases. Furthermore, femtosecond laser ablation does not change the chemical components of the tungsten surface, therefore, the variation in reflectance can be solely attributed to the change in surface morphology.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249;O436

DOI:10.3788/cjl201946.0508023

所属栏目:“超快激光非线性光学”专题

基金项目:国家重点研发计划(2018YFB0504400)、国家自然科学基金(11574160)、天津市自然科学基金(16JCQNJC01900)

收稿日期:2019-01-15

修改稿日期:2019-03-11

网络出版日期:2019-03-13

作者单位    点击查看

王婷媛:南开大学电子信息与光学工程学院现代光学研究所, 天津 300350
刘伟伟:南开大学电子信息与光学工程学院现代光学研究所, 天津 300350
张楠:南开大学电子信息与光学工程学院现代光学研究所, 天津 300350
余志强:南开大学电子信息与光学工程学院现代光学研究所, 天津 300350
付璐:南开大学电子信息与光学工程学院现代光学研究所, 天津 300350
刘洪双:南开大学电子信息与光学工程学院现代光学研究所, 天津 300350
周朗峰:南开大学电子信息与光学工程学院现代光学研究所, 天津 300350

联系人作者:张楠(zhangn@nankai.edu.cn)

【1】Zhang Y J, Song H Y, Liu H Y, et al. Fabrication of millimeter-scaled holes by femtosecond laser filamentation[J]. Chinese Journal of Lasers, 2017, 44(4): 0402012.
张艳杰, 宋海英, 刘海云, 等. 飞秒激光成丝制备毫米级深孔[J]. 中国激光, 2017, 44(4): 0402012.

【2】Chen Z Y, Fang G, Cao L C, et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 2018, 45(4): 0402006.
陈忠贇, 方淦, 曹良成, 等. 飞秒激光光镊直写银微纳结构[J]. 中国激光, 2018, 45(4): 0402006.

【3】Hhm S, Rosenfeld A, Krüger J, et al. Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation[J]. Optics Express, 2015, 23(20): 25959.

【4】Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675.

【5】Reif J, Costache F, Henyk M, et al. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics[J]. Applied Surface Science, 2002, 197/198: 891-895.

【6】Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850-1852.

【7】Vorobyev A Y, Guo C L. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon[J]. Optics Express, 2011, 19(S5): A1031.

【8】Papadopoulou E L, Barberoglou M, Zorba V, et al. Reversible photoinduced wettability transition of hierarchical ZnO structures[J]. The Journal of Physical Chemistry C, 2009, 113(7): 2891-2895.

【9】Barberoglou M, Zorba V, Stratakis E, et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10): 5425-5429.

【10】Bonse J, Kirner S V, Koter R, et al. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications[J]. Applied Surface Science, 2017, 418: 572-579.

【11】Okamuro K, Hashida M, Miyasaka Y, et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation[J]. Physical Review B, 2010, 82(16): 165417.

【12】Bonse J, Krüger J, Hhm S, et al. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 2012, 24(4): 042006.

【13】Forster M, Kautek W, Faure N, et al. Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses[J]. Physical Chemistry Chemical Physics, 2011, 13(9): 4155.

【14】Rebollar E, Vázquez de Aldana J R, Martín-Fabiani I, et al. Assessment of femtosecond laser induced periodic surface structures on polymer films[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11287-11298.

【15】Ouyang J, Perrie W, Allegre O J, et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring[J]. Optics Express, 2015, 23(10): 12562.

【16】JJ Nivas J, He S T, Rubano A, et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate[J]. Scientific Reports, 2016, 5(1): 17929.

【17】Cai M Q, Li P P, Feng D, et al. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields[J]. Optics Letters, 2016, 41(7): 1474.

【18】Schindelin J, Rueden C T, Hiner M C, et al. The ImageJ ecosystem: an open platform for biomedical image analysis[J]. Molecular Reproduction and Development, 2015, 82(7/8): 518-529.

【19】Cho W S, Yashima M, Kakihana M, et al. Room-temperature preparation of highly crystallized luminescent SrWO4 film by an electrochemical method[J]. Journal of the American Ceramic Society, 1995, 78(11): 3110-3112.

【20】Porto S P S, Scott J F. Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4[J]. Physical Review, 1967, 157(3): 716-719.

【21】Baserga A, Russo V, di Fonzo F, et al. Nanostructured tungsten oxide with controlled properties: synthesis and Raman characterization[J]. Thin Solid Films, 2007, 515(16): 6465-6469.

【22】Filipescu M, Ion V, Colceag D, et al. Growth and characterizations of nanostructured tungsten oxides[J]. Romanian Reports in Physics, 2012, 64(2): 1213-1225.

【23】Vorobyev A Y, Makin V S, Guo C L. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. Journal of Applied Physics, 2007, 101(3): 034903.

【24】Kim W, Guo J P, Hendrickson J. Subwavelength metal grating metamaterial for polarization-selective optical antireflection coating[J]. Journal of the Optical Society of America B, 2015, 32(7): 1392.

【25】Tian K, Zou Y G, Hai Y N, et al. Design of subwavelength anti-reflective grating[J]. Chinese Journal of Lasers, 2016, 43(9): 0901004.
田锟, 邹永刚, 海一娜, 等. 亚波长抗反射光栅的设计[J]. 中国激光, 2016, 43(9): 0901004.

【26】Andreev V M, Vlasov A S, Khvostikov V P, et al. Solar thermophotovoltaic converters based on tungsten emitters[J]. Journal of Solar Energy Engineering, 2007, 129(3): 298.

【27】Brandner J J, Anurjew E, Bohn L, et al. Concepts and realization of microstructure heat exchangers for enhanced heat transfer[J]. Experimental Thermal and Fluid Science, 2006, 30(8): 801-809.

引用该论文

Wang Tingyuan,Liu Weiwei,Zhang Nan,Yu Zhiqiang,Fu Lu,Liu Hongshuang,Zhou Langfeng. Fabrication of Periodic Curved Ripple Structures on Tungsten Surface Using Femtosecond Non-Cylindrical Vector Beam[J]. Chinese Journal of Lasers, 2019, 46(5): 0508023

王婷媛,刘伟伟,张楠,余志强,付璐,刘洪双,周朗峰. 非柱对称飞秒矢量光在钨表面制备弧形周期条纹结构[J]. 中国激光, 2019, 46(5): 0508023

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF