首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508007--1)

高功率超快光纤激光器研究进展

Research Progress of High-Power Ultrafast Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高功率超快脉冲激光应用广泛,包括精密工业加工、超快光谱学、强场物理学及军事应用等。光纤激光具有操作方便、散热要求低、光束质量好等优势。综述了近年来高功率超快光纤激光器的研究进展,包括新兴的被动锁模光纤激光技术及啁啾脉冲放大技术,以高功率超快光纤激光器在高次谐波产生中的应用为例,阐述了高能量光纤激光在非线性光学中的优势,对高功率超快光纤激光器的研究前景进行了展望。

Abstract

High-power ultrafast lasers have a wide range of applications, such as precise industrial processing, ultrafast spectroscopy, high-field physics, and military applications. Fiber lasers have the advantages of convenient operation, thermal load insensitivity, and good beam quality. The recent research progress of high-power ultrafast fiber lasers is reviewed, including the emerging passive mode locking and chirped pulse amplification technologies. The advantages of high-power fiber lasers on nonlinear optics are discussed via an example application, namely using high-power ultrafast fiber lasers to generate high-order harmonics. Further, the potential future research directions have also been prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/CJL201946.0508007

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(51527901)

收稿日期:2019-01-21

修改稿日期:2019-03-27

网络出版日期:2019-04-02

作者单位    点击查看

余霞:新加坡国立大学电子与计算机工程系, 新加坡 119077
罗佳琪:南洋理工大学电子电气工程系, 新加坡 639798
肖晓晟:清华大学精密仪器系精密测试技术与仪器国家重点实验室, 北京 100084
王攀:清华大学精密仪器系精密测试技术与仪器国家重点实验室, 北京 100084

联系人作者:余霞(eleyuxia@nus.edu.sg)

【1】Corkum P B and Krausz F. Attosecond science. Nature Physics. 3(6), 381-387(2007).

【2】MüLLER D, Backus S, Read K et al. . Cryogenic cooling multiplies output of Ti∶sapphire laser. Laser Focus World. 41(10), 65-68(2005).

【3】Giesen A, Hügel H, Voss A et al. Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B. 58(5), 365-372(1994).

【4】Gapontsev D. kW CW single mode ytterbium fiber laser in all-fiber format[2019-01-21]. https:∥ci.nii.ac.jp/naid/10023978330. (0).

【5】Haus H A. Mode-locking of lasers. IEEE Journal of Selected Topics in Quantum Electronics. 6(6), 1173-1185(2000).

【6】Fu W, Wright L G, Sidorenko P et al. Several new directions for ultrafast fiber lasers. Optics Express. 26(8), 9432-9463(2018).

【7】Fu W, Wright L G and Wise F W. High-power femtosecond pulses without a modelocked laser. Optica. 4(7), 831-834(2017).

【8】Grelu P and Akhmediev N. Dissipative solitons for mode-locked lasers. Nature Photonics. 6(2), 84-92(2012).

【9】Wise F W, Chong A and Renninger W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser & Photonics Review. 2(1/2), 58-73(2008).

【10】Lim H, Ilday F and Wise F W. Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser. Optics Letters. 28(8), 660-662(2003).

【11】Kieu K, Renninger W H and Chong A. et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Optics Letters. 34(5), 593-595(2009).

【12】Chong A, Liu H, Nie B et al. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution. Optics Express. 20(13), 14213-14220(2012).

【13】Mamyshev P V. All-optical data regeneration based on self-phase modulation effect. 24th European Conference on Optical Communication. 475-476(1998).

【14】Regelskis K. eludevi ius J, Viskontas K, et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering . Optics Letters. 40(22), 5255-5258(2015).

【15】Samartsev I, Bordenyuk A and Gapontsev V. Environmentally stable seed source for high power ultrafast laser. Proceedings of SPIE. 10085, (2017).

【16】Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator. Optica. 4(6), 649-654(2017).

【17】Sidorenko P, Fu W, Wright L G et al. Self-seeded, multi-megawatt, Mamyshev oscillator. Optics Letters. 43(11), 2672-2675(2018).

【18】Olivier M, Boulanger V, Guilbert-Savary F et al. Femtosecond Mamyshev oscillator at 1550 nm [2019-01-21]. https:∥doi.org/10.1364/. ASSL. ATu1A, (2018).

【19】Wright L G, Christodoulides D N and Wise F W. Spatiotemporal mode-locking in multimode fiber lasers. Science. 358(6359), 94-97(2017).

【20】Qin H Q, Xiao X S, Wang P et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Optics Letters. 43(9), 1982-1985(2018).

【21】Nelson L E, Ippen E P and Haus H A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Applied Physics Letters. 67(1), 19-21(1995).

【22】Engelbrecht M, Haxsen F, Ruehl A et al. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 n. Optics Letters. 33(7), 690-692(2008).

【23】Haxsen F, Ruehl A and Engelbrecht M. et al. Stretched-pulse operation of a thulium-doped fiber laser. Optics Express. 16(25), 20471-20476(2008).

【24】Gumenyuk R, Vartiainen I, Tuovinen H et al. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser. Optics Letters. 36(5), 609-611(2011).

【25】Wienke A, Haxsen F and Wandt D. et al. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management. Optics Letters. 37(13), 2466-2468(2012).

【26】Haxsen F, Wandt D and Morgner U. et al. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser. Optics Letters. 37(6), 1014-1016(2012).

【27】Kadel R and Washburn B R. All-fiber passively mode-locked thulium/holmium laser with two center wavelengths. Applied Optics. 51(27), 6465-6470(2012).

【28】Chernysheva M A, Krylov A A, Kryukov P G et al. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber. Optics Express. 20(26), B124-B130(2012).

【29】Chernysheva M A, Krylov A A, Arutyunyan N R et al. SESAM and SWCNT mode-locked all-fiber thulium-doped lasers based on the nonlinear amplifying loop mirror. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), (2014).

【30】Wang Q Q, Chen T, Li M S et al. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes. Applied Physics Letters. 103(1), (2013).

【31】Kadel R and Washburn B R. Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser. Applied Optics. 54(4), 746-750(2015).

【32】Tang Y X, Chong A and Wise F W. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser. Optics Letters. 40(10), 2361-2364(2015).

【33】Wang Y, Alam S U, Obraztsova E D et al. Generation of stretched pulses and dissipative solitons at 2 μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers. Optics Letters. 41(16), 3864-3867(2016).

【34】Li Y H, Wang L Z, Kang Y et al. Microfiber-enabled dissipative soliton fiber laser at 2 μm. Optics Letters. 43(24), 6105-6108(2018).

【35】Cheng H H, Lin W, Luo Z Q et al. Passively mode-locked Tm 3+-doped fiber laser with gigahertz fundamental repetition rate . IEEE Journal of Selected Topics in Quantum Electronics. 24(3), 1-6(2018).

【36】Pang M and He W. Russell P S J. Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber. Optics Letters. 41(19), 4601-4604(2016).

【37】Tarasov N, Perego A M, Churkin D V et al. Mode-locking via dissipative Faraday instability. Nature Communications. 7, (2016).

【38】He X, Luo A P, Yang Q et al. 60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser. Applied Physics Express. 6(11), (2013).

【39】Li J F, Zhang Z X, Sun Z Y et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes. Optics Express. 22(7), (2014).

【40】Liu S, Yan F P, Li Y et al. Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion. Photonics Research. 4(6), 318-321(2016).

【41】Liu S, Yan F P, Zhang L N et al. Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion. Journal of Optics. 18(1), (2016).

【42】Wang X F, Xia Q and Gu B. A 1.9 μm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications. 434, 180-183(2019).

【43】Zhao K J, Wang P, Ding Y H et al. High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser. Applied Physics Express. 12(1), (2019).

【44】Grelu P, Chang W, Ankiewicz A et al. Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators. Journal of the Optical Society of America B. 27(11), (2010).

【45】Ibarra-Escamilla B, Duran-Sanchez M, Posada-Ramirez B et al. Dissipative soliton resonance in a thulium-doped all-fiber laser operating at large anomalous dispersion regime. IEEE Photonics Journal. 10(5), (2018).

【46】Du T J, Li W W, Ruan Q J et al. 2 μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser. Applied Physics Express. 11(5), (2018).

【47】Snitzer E, Po H, Hakimi F et al. Double clad, offset core Nd fiber laser[2019-01-21]. https:∥www.osapublishing.org/view_article.cfm gotourl=https%3A%2F%2Fwww%2Eosapublishing%2Eorg%2FDirectPDFAccess%2F71545563-F986-10F8-2082CFC83610E990_144250%2FOFS-1988-PD5%2Epdf%3Fda%3D1%26id%3D144250%26uri%3DOFS-1988-PD5%26seq%3D0%26mobile%3Dno&org=Shanghai%20Institute%20of%20Optics%20and%20Fine%20Mechanics%20Library. (0).

【48】Strickland D and Mourou G. Compression of amplified chirped optical pulses. Optics Communications. 55(6), 447-449(1985).

【49】Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics Express. 12(25), 6088-6902(2004).

【50】Brooks C D and di Teodoro F. Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier. Applied Physics Letters. 89(11), (2006).

【51】Eidam T, Hanf S and Seise E. et al. Femtosecond fiber CPA system emitting 830 W average output power. Optics Letters. 35(2), 94-96(2010).

【52】Wan P, Yang L M and Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. Optics Express. 21(24), 29854-29859(2013).

【53】Eidam T, Rothhardt J and Stutzki F. et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Optics Express. 19(1), 255-260(2011).

【54】Jauregui C, Otto H J, Stutzki F et al. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening. Optics Express. 23(16), 20203-20218(2015).

【55】Stihler C, Jauregui C and Tünnermann A. et al. Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers. Light: Science & Applications. 7(1), (2018).

【56】Dong L. Stimulated thermal Rayleigh scattering in optical fibers. Optics Express. 21(3), 2642-2656(2013).

【57】Hansen K R, Alkeskjold T T, Broeng J et al. Theoretical analysis of mode instability in high-power fiber amplifiers. Optics Express. 21(2), 1944-1971(2013).

【58】Otto H J, Modsching N, Jauregui C et al. Impact of photodarkening on the mode instability threshold. Optics Express. 23(12), 15265-15277(2015).

【59】Dong L. Thermal lensing in optical fibers. Optics Express. 24(17), 19841-19852(2016).

【60】Jauregui C, Otto H J and Stutzki F. et al. Passive mitigation strategies for mode instabilities in high-power fiber laser systems. Optics Express. 21(16), 19375-19386(2013).

【61】Ward B, Robin C and Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Optics Express. 20(10), 11407-11422(2012).

【62】Smith A V and Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm. Optics Express. 24(2), 975-992(2016).

【63】Goodno G D, Book L D and Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Optics Letters. 34(8), 1204-1206(2009).

【64】Gaida C, Gebhardt M and Heuermann T. et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Optics Letters. 43(23), 5853-5856(2018).

【65】Gaida C, Gebhardt M, Stutzki F et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power. Optics Letters. 41(17), 4130-4133(2016).

【66】Liao K H, Cheng M Y, Flecher E et al. Large-aperture chirped volume Bragg grating based fiber CPA system. Optics Express. 15(8), 4876-4882(2007).

【67】Sobon G, Krzempek K, Tarka J et al. Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating. Laser Physics. 26(1), (2015).

【68】H drich S, Kienel M, Müller M et al. Energetic sub-2-cycle laser with 216 W average power. Optics Letters. 41(18), 4332-4335(2016).

【69】Gebhardt M, Gaida C, Heuermann T et al. Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2 μm wavelength. Optics Letters. 42(20), 4179-4182(2017).

【70】Zhao J, Hu M L, Fan J T et al. Research progress of nonlinear frequency conversion technology based on fiber femtosecond lasers. Laser & Optoelectronics Progress. 55(4), (2018).
赵君, 胡明列, 范锦涛 等. 光纤飞秒激光抽运的非线性光学频率变换研究进展. 激光与光电子学进展. 55(4), (2018).

【71】Corkum P B. Plasma perspective on strong field multiphoton ionization. Physical Review Letters. 71(13), (1993).

【72】Antoine P. L''''Huillier A, Lewenstein M. Attosecond pulse trains using high-order harmonics. Physical Review Letters. 77(7), (1996).

【73】Rothhardt J, H drich S, Klenke A et al. 53 W average power few-cycle fiber laser system generating soft X rays up to the water window. Optics letters. 39(17), 5224-5227(2014).

【74】H drich S, Klenke A, Rothhardt J et al. High photon flux table-top coherent extreme-ultraviolet source. Nature Photonics. 8(10), 779-783(2014).

【75】Jones R J, Moll K D, Thorpe M J et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Physical Review Letters. 94(19), (2005).

【76】Yost D C, Schibli T R and Ye J. Efficient output coupling of intracavity high-harmonic generation. Optics Letters. 33(10), 1099-1101(2008).

【77】Carstens H, H gner M, Saule T et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica. 3(4), 366-369(2016).

【78】Gaponenko M, Labaye F and Wittwer V. et al. Compact megahertz coherent XUV generation by HHG inside an ultrafast thin disk laser [2019-01-21]. https:∥doi.org/10.1364/. NLO. NTh3A, (2017).

【79】H drich S, Krebs M and Hoffmann A. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light: Science & Applications. 4(8), (2015).

【80】H drich S, Rothhardt J, Krebs M et al. Single-pass high harmonic generation at high repetition rate and photon flux. Journal of Physics B: Atomic, Molecular and Optical Physics. 49(17), (2016).

【81】Lee K F, Ding X Y, Hammond T J et al. Harmonic generation in solids with direct fiber laser pumping. Optics Letters. 42(6), 1113-1116(2017).

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF