首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508007--1)

高功率超快光纤激光器研究进展

Research Progress of High-Power Ultrafast Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高功率超快脉冲激光应用广泛,包括精密工业加工、超快光谱学、强场物理学及军事应用等。光纤激光具有操作方便、散热要求低、光束质量好等优势。综述了近年来高功率超快光纤激光器的研究进展,包括新兴的被动锁模光纤激光技术及啁啾脉冲放大技术,以高功率超快光纤激光器在高次谐波产生中的应用为例,阐述了高能量光纤激光在非线性光学中的优势,对高功率超快光纤激光器的研究前景进行了展望。

Abstract

High-power ultrafast lasers have a wide range of applications, such as precise industrial processing, ultrafast spectroscopy, high-field physics, and military applications. Fiber lasers have the advantages of convenient operation, thermal load insensitivity, and good beam quality. The recent research progress of high-power ultrafast fiber lasers is reviewed, including the emerging passive mode locking and chirped pulse amplification technologies. The advantages of high-power fiber lasers on nonlinear optics are discussed via an example application, namely using high-power ultrafast fiber lasers to generate high-order harmonics. Further, the potential future research directions have also been prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/cjl201946.0508007

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(51527901)

收稿日期:2019-01-21

修改稿日期:2019-03-27

网络出版日期:2019-04-02

作者单位    点击查看

余霞:新加坡国立大学电子与计算机工程系, 新加坡 119077
罗佳琪:南洋理工大学电子电气工程系, 新加坡 639798
肖晓晟:清华大学精密仪器系精密测试技术与仪器国家重点实验室, 北京 100084
王攀:清华大学精密仪器系精密测试技术与仪器国家重点实验室, 北京 100084

联系人作者:余霞(eleyuxia@nus.edu.sg)

【1】Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387.

【2】MüLLER D, Backus S, Read K, et al. Cryogenic cooling multiplies output of Ti∶sapphire laser[J]. Laser Focus World, 2005, 41(10): 65-68.

【3】Giesen A, Hügel H, Voss A, et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 1994, 58(5): 365-372.

【4】Gapontsev D. kW CW single mode ytterbium fiber laser in all-fiber format[C/OL]. [2019-01-21]. https:∥ci.nii.ac.jp/naid/10023978330.

【5】Haus H A. Mode-locking of lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1173-1185.

【6】Fu W, Wright L G, Sidorenko P, et al. Several new directions for ultrafast fiber lasers[J]. Optics Express, 2018, 26(8): 9432-9463.

【7】Fu W, Wright L G, Wise F W. High-power femtosecond pulses without a modelocked laser[J]. Optica, 2017, 4(7): 831-834.

【8】Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92.

【9】Wise F W, Chong A, Renninger W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Review, 2008, 2(1/2): 58-73.

【10】Lim H, Ilday F , Wise F W. Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser[J]. Optics Letters, 2003, 28(8): 660-662.

【11】Kieu K, Renninger W H, Chong A, et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 2009, 34(5): 593-595.

【12】Chong A, Liu H, Nie B, et al. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution[J]. Optics Express, 2012, 20(13): 14213-14220.

【13】Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]. 24th European Conference on Optical Communication, 1998: 475-476.

【14】Regelskis K, eludeviius J, Viskontas K, et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 2015, 40(22): 5255-5258.

【15】Samartsev I, Bordenyuk A, Gapontsev V. Environmentally stable seed source for high power ultrafast laser[J]. Proceedings of SPIE, 2017, 10085: 100850S.

【16】Liu Z W, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654.

【17】Sidorenko P, Fu W, Wright L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 2018, 43(11): 2672-2675.

【18】Olivier M, Boulanger V, Guilbert-Savary F, et al. Femtosecond Mamyshev oscillator at 1550 nm[C/OL]. [2019-01-21]. https:∥doi.org/10.1364/ASSL.2018.ATu1A.4.

【19】Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.

【20】Qin H Q, Xiao X S, Wang P, et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985.

【21】Nelson L E, Ippen E P, Haus H A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Applied Physics Letters, 1995, 67(1): 19-21.

【22】Engelbrecht M, Haxsen F, Ruehl A, et al. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ[J]. Optics Letters, 2008, 33(7): 690-692.

【23】Haxsen F, Ruehl A, Engelbrecht M, et al. Stretched-pulse operation of a thulium-doped fiber laser[J]. Optics Express, 2008, 16(25): 20471-20476.

【24】Gumenyuk R, Vartiainen I, Tuovinen H, et al. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J]. Optics Letters, 2011, 36(5): 609-611.

【25】Wienke A, Haxsen F, Wandt D, et al. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management[J]. Optics Letters, 2012, 37(13): 2466-2468.

【26】Haxsen F, Wandt D, Morgner U, et al. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Optics Letters, 2012, 37(6): 1014-1016.

【27】Kadel R, Washburn B R. All-fiber passively mode-locked thulium/holmium laser with two center wavelengths[J]. Applied Optics, 2012, 51(27): 6465-6470.

【28】Chernysheva M A, Krylov A A, Kryukov P G, et al. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber[J]. Optics Express, 2012, 20(26): B124-B130.

【29】Chernysheva M A, Krylov A A, Arutyunyan N R, et al. SESAM and SWCNT mode-locked all-fiber thulium-doped lasers based on the nonlinear amplifying loop mirror[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1101208.

【30】Wang Q Q, Chen T, Li M S, et al. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes[J]. Applied Physics Letters, 2013, 103(1): 011103.

【31】Kadel R, Washburn B R. Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser[J]. Applied Optics, 2015, 54(4): 746-750.

【32】Tang Y X, Chong A, Wise F W. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser[J]. Optics Letters, 2015, 40(10): 2361-2364.

【33】Wang Y, Alam S U, Obraztsova E D, et al. Generation of stretched pulses and dissipative solitons at 2 μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers[J]. Optics Letters, 2016, 41(16): 3864-3867.

【34】Li Y H, Wang L Z, Kang Y, et al. Microfiber-enabled dissipative soliton fiber laser at 2 μm[J]. Optics Letters, 2018, 43(24): 6105-6108.

【35】Cheng H H, Lin W, Luo Z Q, et al. Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-6.

【36】Pang M, He W, Russell P S J. Gigahertz-repetition-rate Tm-doped fiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber[J]. Optics Letters, 2016, 41(19): 4601-4604.

【37】Tarasov N, Perego A M, Churkin D V, et al. Mode-locking via dissipative Faraday instability[J]. Nature Communications, 2016, 7: 12441.

【38】He X, Luo A P, Yang Q, et al. 60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser[J]. Applied Physics Express, 2013, 6(11): 112702.

【39】Li J F, Zhang Z X, Sun Z Y, et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes[J]. Optics Express, 2014, 22(7): 7875.

【40】Liu S, Yan F P, Li Y, et al. Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion[J]. Photonics Research, 2016, 4(6): 318-321.

【41】Liu S, Yan F P, Zhang L N, et al. Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion[J]. Journal of Optics, 2016, 18(1): 015508.

【42】Wang X F, Xia Q, Gu B. A 1.9 μm noise-like mode-locked fiber laser based on compact figure-9 resonator[J]. Optics Communications, 2019, 434: 180-183.

【43】Zhao K J, Wang P, Ding Y H, et al. High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser[J]. Applied Physics Express, 2019, 12(1): 012002.

【44】Grelu P, Chang W, Ankiewicz A, et al. Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators[J]. Journal of the Optical Society of America B, 2010, 27(11): 23362341.

【45】Ibarra-Escamilla B, Duran-Sanchez M, Posada-Ramirez B, et al. Dissipative soliton resonance in a thulium-doped all-fiber laser operating at large anomalous dispersion regime[J]. IEEE Photonics Journal, 2018, 10(5): 1503907.

【46】Du T J, Li W W, Ruan Q J, et al. 2 μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser[J]. Applied Physics Express, 2018, 11(5): 052701.

【47】Snitzer E, Po H, Hakimi F, et al. Double clad, offset core Nd fiber laser[ZJ/OL]. [2019-01-21]. https:∥www.osapublishing.org/view_article.cfm?gotourl=https%3A%2F%2Fwww%2Eosapublishing%2Eorg%2FDirectPDFAccess%2F71545563-F986-10F8-2082CFC83610E990_144250%2FOFS-1988-PD5%2Epdf%3Fda%3D1%26id%3D144250%26uri%3DOFS-1988-PD5%26seq%3D0%26mobile%3Dno&org=Shanghai%20Institute%20of%20Optics%20and%20Fine%20Mechanics%20Library.

【48】Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449.

【49】Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6902.

【50】Brooks C D, di Teodoro F. Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier[J]. Applied Physics Letters, 2006, 89(11): 111119.

【51】Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

【52】Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859.

【53】Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260.

【54】Jauregui C, Otto H J, Stutzki F, et al. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening[J]. Optics Express, 2015, 23(16): 20203-20218.

【55】Stihler C, Jauregui C, Tünnermann A, et al. Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers[J]. Light: Science & Applications, 2018, 7(1): 59.

【56】Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.

【57】Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971.

【58】Otto H J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.

【59】Dong L. Thermal lensing in optical fibers[J]. Optics Express, 2016, 24(17): 19841-19852.

【60】Jauregui C, Otto H J, Stutzki F, et al. Passive mitigation strategies for mode instabilities in high-power fiber laser systems[J]. Optics Express, 2013, 21(16): 19375-19386.

【61】Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

【62】Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Optics Express, 2016, 24(2): 975-992.

【63】Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Optics Letters, 2009, 34(8): 1204-1206.

【64】Gaida C, Gebhardt M, Heuermann T, et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 2018, 43(23): 5853-5856.

【65】Gaida C, Gebhardt M, Stutzki F, et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power[J]. Optics Letters, 2016, 41(17): 4130-4133.

【66】Liao K H, Cheng M Y, Flecher E, et al. Large-aperture chirped volume Bragg grating based fiber CPA system[J]. Optics Express, 2007, 15(8): 4876-4882.

【67】Sobon G, Krzempek K, Tarka J, et al. Compact, all-PM fiber-CPA system based on a chirped volume Bragg grating[J]. Laser Physics, 2015, 26(1): 015106.

【68】Hdrich S, Kienel M, Müller M, et al. Energetic sub-2-cycle laser with 216 W average power[J]. Optics Letters, 2016, 41(18): 4332-4335.

【69】Gebhardt M, Gaida C, Heuermann T, et al. Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2 μm wavelength[J]. Optics Letters, 2017, 42(20): 4179-4182.

【70】Zhao J, Hu M L, Fan J T, et al. Research progress of nonlinear frequency conversion technology based on fiber femtosecond lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001.
赵君, 胡明列, 范锦涛, 等. 光纤飞秒激光抽运的非线性光学频率变换研究进展[J]. 激光与光电子学进展, 2018, 55(4): 040001.

【71】Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994.

【72】Antoine P, L′Huillier A, Lewenstein M. Attosecond pulse trains using high-order harmonics[J]. Physical Review Letters, 1996, 77(7): 1234.

【73】Rothhardt J, Hdrich S, Klenke A, et al. 53 W average power few-cycle fiber laser system generating soft X rays up to the water window[J]. Optics letters, 2014, 39(17): 5224-5227.

【74】Hdrich S, Klenke A, Rothhardt J, et al. High photon flux table-top coherent extreme-ultraviolet source[J]. Nature Photonics, 2014, 8(10): 779-783.

【75】Jones R J, Moll K D, Thorpe M J, et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity[J]. Physical Review Letters, 2005, 94(19): 193201.

【76】Yost D C, Schibli T R, Ye J. Efficient output coupling of intracavity high-harmonic generation[J]. Optics Letters, 2008, 33(10): 1099-1101.

【77】Carstens H, Hgner M, Saule T, et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV[J]. Optica, 2016, 3(4): 366-369.

【78】Gaponenko M, Labaye F, Wittwer V, et al. Compact megahertz coherent XUV generation by HHG inside an ultrafast thin disk laser[C/OL]. [2019-01-21]. https:∥doi.org/10.1364/NLO.2017.NTh3A.1.

【79】Hdrich S, Krebs M, Hoffmann A, et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources[J]. Light: Science & Applications, 2015, 4(8): e320.

【80】Hdrich S, Rothhardt J, Krebs M, et al. Single-pass high harmonic generation at high repetition rate and photon flux[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(17): 172002.

【81】Lee K F, Ding X Y, Hammond T J, et al. Harmonic generation in solids with direct fiber laser pumping[J]. Optics Letters, 2017, 42(6): 1113-1116.

引用该论文

Yu Xia,Luo Jiaqi,Xiao Xiaosheng,Wang Pan. Research Progress of High-Power Ultrafast Fiber Lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508007

余霞,罗佳琪,肖晓晟,王攀. 高功率超快光纤激光器研究进展[J]. 中国激光, 2019, 46(5): 0508007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF