首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508006--1)

新型高功率中红外光纤激光材料与超连续谱激光研究进展

Progress on Novel High Power Mid-Infrared Fiber Laser Materials and Supercontinuum Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

制备出一种具有较好热稳定性和化学稳定性的氟碲酸盐玻璃光纤,并利用其作为非线性介质研制出光谱范围覆盖0.6~5.4 μm的宽带超连续谱(SC)激光光源和平均功率约为20 W、光谱范围覆盖1~4 μm的SC激光光源。主要对目前国内外高功率中红外SC激光光源的研究进展进行了总结,包括氟化物玻璃光纤和氟碲酸盐玻璃光纤的材料特点和以其作为非线性介质的SC激光光源,并对此类SC激光光源的进一步发展进行了展望。

Abstract

In this study, a fluorotellurite glass fiber with relatively good thermal and chemical stability was developed. Using this glass fiber as a nonlinear medium, the broadband supercontinuum (SC) generation of 0.6-5.4 μm was experimentally obtained. An SC light source with an average power of about 20 W and a spectral range of 1-4 μm was also obtained. This study mainly focuses on the recent progress on the high-power mid-infrared SC light sources, including the material characteristics of fluoride glass fibers and fluorotellurite glass fibers and the SC laser sources based on the former. The future development of such SC laser sources is prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201946.0508006

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(61527823,61378004,61605058,61827821,11474132)、吉林省重点科技研发项目(20180201120GX)、吉林省重大科技招标专项(20170203012GX)、装备预研教育部联合基金(6141A02022413)、吉林省优秀青年人才基金(20180520188JH)

收稿日期:2019-01-29

修改稿日期:2019-03-11

网络出版日期:2019-03-13

作者单位    点击查看

贾志旭:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
姚传飞:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
李真睿:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
贾世杰:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
赵志鹏:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
秦伟平:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
秦冠仕:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012

联系人作者:秦冠仕(qings@jlu.edu.cn)

【1】Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1181.

【2】Herrmann J, Griebner U, Zhavoronkov N, et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J]. Physical Review Letters, 2002, 88(17): 173901.

【3】Alfano R R, Shapiro S L. Emission in the region 4000 to 7000  via four-photon coupling in glass[J]. Physical Review Letters, 1970, 24: 584-587.

【4】Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24: 592-594.

【5】Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Optics Letters, 2000, 25(1): 25-27.

【6】Knight J C. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851.

【7】Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

【8】Reeves W H, Skryabin D V, Biancalana F, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres[J]. Nature, 2003, 424(6948): 511-515.

【9】Zhao L, Li Y, Guo C, et al. Generation of 215 W supercontinuum containing visible spectra from 480 nm[J]. Optics Communications, 2018, 425: 118-120.

【10】Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 2001, 26(9): 608-610.

【11】Wildanger D, Rittweger E, Kastrup L, et al. STED microscopy with a supercontinuum laser source[J]. Optics Express, 2008, 16(13): 9614-9621.

【12】Brown D M, Shi K B, Liu Z W, et al. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents[J]. Optics Express, 2008, 16(12): 8457-8471.

【13】Wallace J. IR supercontinuum laser helps defend helicopters[N]. Laser Focus World, 2010, Sept 3.

【14】Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target mid-IR applications[J]. Laser Focus World, 2005, 41(4): 83-87.

【15】Harbold J M, Ilday F O, Wise F W, et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photonics Technology Letters, 2002, 14(6): 822-824.

【16】Slusher R E, Lenz G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. Journal of the Optical Society of America B, 2004, 21(6): 1146-1155.

【17】Feng X, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology, 2005, 23(6): 2046-2054.

【18】Petersen C R, Mller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834.

【19】Cheng T L, Nagasaka K, Tuan T H, et al., Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.

【20】Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 2017, 11(2): 1700005.

【21】Gattass R R, Brandon Shaw L, Nguyen V Q, et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 2012, 18(5): 345-348.

【22】Xia C N, Xu Z, Islam M N, et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 422-434.

【23】Yang W Q, Zhang B, Xue G H, et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Letters, 2014, 39(7): 1849-1852.

【24】Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 2014, 22(20): 24384-24391.

【25】Liu K, Liu J, Shi H X, et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier[C]∥Advanced Solid State Lasers, OSA Technical Digest (online), Nov. 16-21, 2014, Shanghai, China. Washington D C: OSA, 2014: AM3A.6.

【26】Zheng Z J, Ouyang D Q, Zhao J Q, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4): 135-139.

【27】Yin K, Zhang B, Yang L Y, et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm[J]. Optics Letters, 2017, 42(12): 2334-2337.

【28】Bei J F, Foo H T C, Qian G J, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6): 1213-1226.

【29】Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545.

【30】Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[J]. Proceedings of SPIE, 2013, 8898: 889808.

【31】Shi H X, Feng X, Tan F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12): 3967-3976.

【32】Yao C F, He C F, Jia Z X, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing[J]. Optics Letters, 2015, 40(20): 4695-4698.

【33】Wang F, Wang K K, Yao C F, et al. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation[J]. Optics Letters, 2016, 41(3): 634-637.

【34】Jia Z X, Yao C F, Jia S J, et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber[J]. Applied Physics Letters, 2017, 110(26): 261106.

【35】Jia X, Yao F, Jia J, et al. Supercontinuum generation covering the entire 0.4-5 μm transmission window in a tapered ultra-high numerical aperture all-solid fluorotellurite fiber[J]. Laser Physics Letters, 2018, 15(2): 025102.

【36】Qin G S, Yan X, Kito C, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Applied Physics Letters, 2009, 95(16): 161103.

【37】Yao C F, Jia Z X, Li Z R, et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 2018, 5(10): 1264-1270.

【38】Savelii I, Desevedavy F, Jules J C, et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Optical Materials, 2013, 35(8): 1595-1599.

【39】Penilla E H, Devia-Cruz L F, Duarte M A, et al. Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials[J]. Light: Science & Applications 2018, 7: 33.

【40】Campbell J H, Suratwala T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers[J]. Journal of Non-Crystalline Solids, 2000, 263/264: 318-341.

【41】Hagen C L, Walewski J W, Sanders S T. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source[J]. IEEE Photonics Technology Letters, 2006, 18(1): 91-93.

【42】Gauthier J C, Fortin V, Carrée J Y, et al. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber[J]. Optics Letters, 2016, 41(8): 1756-1759.

【43】Théberge F, Bérubé N, Poulain S, et al. Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers[J]. Photonics Research, 2018, 6(6): 609-613.

【44】Yang L Y, Zhang B, Jin D H, et al. All-fiberized, multi-watt 2-5-μm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency[J]. Optics Letters, 2018, 43(21): 5206-5209.

【45】Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 2002, 27(13): 1180-1182.

引用该论文

Jia Zhixu,Yao Chuanfei,Li Zhenrui,Jia Shijie,Zhao Zhipeng,Qin Weiping,Qin Guanshi. Progress on Novel High Power Mid-Infrared Fiber Laser Materials and Supercontinuum Laser[J]. Chinese Journal of Lasers, 2019, 46(5): 0508006

贾志旭,姚传飞,李真睿,贾世杰,赵志鹏,秦伟平,秦冠仕. 新型高功率中红外光纤激光材料与超连续谱激光研究进展[J]. 中国激光, 2019, 46(5): 0508006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF