首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508014--1)

反谐振空芯光纤及气体拉曼激光技术的研究进展

Research Progress on Hollow-Core Anti-Resonant Fiber and Gas Raman Laser Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

反谐振空芯光纤(HC-ARF)具有宽传输通带、低传输损耗、高损伤阈值和高模式纯度等优势,在高功率脉冲激光传输及压缩、超快非线性频率变换、短距离高速高容量光通信、生物化学分析和量子存储等领域展现出广阔的应用前景。简要回顾了空芯光子晶体光纤(HC-PCF)的发展历程,重点介绍了近年来出现的几种新型HC-ARF。对气体填充HC-ARF在新型拉曼激光频率变换应用领域中的关键技术及最新进展进行了讨论。

Abstract

A hollow-core anti-resonant fiber (HC-ARF) has advantages such as wide transmission bandwidth, low transmission loss, high damage threshold, and high mode purity. The HC-ARF is widely applied in high-power pulse transmission and compression, ultrafast nonlinear frequency conversion, short-haul high-speed and high-capacity optical communications, bio-chemical analysis, and quantum storage. Herein, the development history of a hollow-core photonic crystal fiber(HC-PCF)was briefly reviewed, focusing on several new HC-ARFs that have emerged in recent years. In addition, the key technologies and the recent advances for the applications gas-filled HC-ARFs in the field of novel Raman laser frequency conversion were discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/cjl201946.0508014

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(61675011,61827820,61527822,61535009)

收稿日期:2018-10-31

修改稿日期:2019-03-29

网络出版日期:2019-04-01

作者单位    点击查看

高寿飞:北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124
汪滢莹:北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124
王璞:北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124

联系人作者:汪滢莹(dearyingyingwang@hotmail.com)

【1】Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science (New York, n.y.), 1999, 285(5433): 1537-1539.

【2】Couny F, Benabid F, Roberts P J, et al. Generation and photonic guidance of multi-octave optical-frequency combs[J]. Science, 2007, 318(5853): 1118-1121.

【3】Ghosh S, Bhagwat A R, Renshaw C K, et al. Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber[J]. Physical Review Letters, 2006, 97(2): 023603.

【4】Okaba S, Takano T, Benabid F, et al. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre[J]. Nature Communications, 2014, 5: 4096.

【5】Sprague M R, Michelberger P S, Champion T F M, et al. Broadband single-photon-level memory in a hollow-core photonic crystal fibre[J]. Nature Photonics, 2014, 8(4): 287-291.

【6】Emaury F, Dutin C F, Saraceno C J, et al. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber[J]. Optics Express, 2013, 21(4): 4986.

【7】Joly N Y, Nold J, Chang W, et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an ar-filled photonic crystal fiber[J]. Physical Review Letters, 2011, 106(20): 203901.

【8】Cubillas A M, Unterkofler S, Euser T G, et al. Photonic crystal fibres for chemical sensing and photochemistry[J]. Chemical Society Reviews, 2013, 42(22): 8629-8648.

【9】Dinish U S, Fu C Y, Soh K S, et al. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber[J]. Biosensors and Bioelectronics, 2012, 33(1): 293-298.

【10】Mangan B J, Farr L, Langford A, et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber[C]. Optical Fiber Communication, 2004: PDP24.

【11】Roberts P J, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236-244.

【12】Peng X, Mielke M, Booth T. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber[J]. Optics Express, 2011, 19(2): 923-932.

【13】Hollow core photonic bandgap fiber[EB/OL]. [2019-01-19]. https:∥www.nktphotonics.com/wp-content/uploads/sites/3/2015/01/HC-440.pdf?1538728909

【14】Amezcua-Correa R, Gèrme F, Leon-Saval S G, et al. Control of surface modes in low loss hollow-core photonic bandgap fibers[J]. Optics Express, 2008, 16(2): 1142-1149.

【15】Poletti F, Wheeler N V, Petrovich M N, et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 2013, 7(4): 279-284.

【16】Duguay M A, Kokubun Y, Koch T L, et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J]. Applied Physics Letters, 1986, 49(1): 13-15.

【17】Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27(18): 1592-1594.

【18】Ding W, Wang Y Y. Analytic model for light guidance in single-wall hollow-core anti-resonant fibers[J]. Optics Express, 2014, 22(22): 27242-27256.

【19】Wang Y Y, Couny F, Roberts P J, et al. Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF[C]. Conference on Lasers and Electro-Optics, 2010: CPDB4.

【20】Ding W, Wang Y Y. Hybrid transmission bands and large birefringence in hollow-core anti-resonant fibers[J]. Optics Express, 2015, 23(16): 21165-21174.

【21】Uebel P, Günendi M, Frosz M H, et al. A broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes[C]. Frontiers in Optics 2015: FW6C.2.

【22】Benabid F, Knight J C, Antonopoulos G, et al. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592): 399-402.

【23】Pearce G J, Wiederhecker G S, Poulton C G, et al. Models for guidance in Kagome-structured hollow-core photonic crystal fibres[J]. Optics Express, 2007, 15(20): 12680-12685.

【24】Wang Y Y, Wheeler N V, Couny F, et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber[J]. Optics Letters, 2011, 36(5): 669-671.

【25】Wang Y Y, Peng X, Alharbi M, et al. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression[J]. Optics Letters, 2012, 37(15): 3111-3113.

【26】Debord B, Alharbi M, Bradley T, et al. Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss[J]. Optics Express, 2013, 21(23): 28597-28608.

【27】Bradley T D, Wang Y Y, Alharbi M, et al. Optical properties of low loss (70 db/km) hypocycloid-core kagome hollow core photonic crystal fiber for Rb and Cs based optical applications[J]. Journal of Lightwave Technology, 2013, 31(16): 2752-2755.

【28】Debord B, Alharbi M, Benot A, et al. Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications[J]. Optics Letters, 2014, 39(21): 6245-6248.

【29】Wheeler N V, Bradley T D, Hayes J R, et al. Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR[J]. Optics Letters, 2017, 42(13): 2571-2574.

【30】Pryamikov A D, Biriukov A S, Kosolapov A F, et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >35 μm[J]. Optics Express, 2011, 19(2): 1441-1448.

【31】Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region[J]. Optics Express, 2012, 20(10): 11153-11158.

【32】Yu F, Knight J C. Spectral attenuation limits of silica hollow core negative curvature fiber[J]. Optics Express, 2013, 21(18): 21466-21471.

【33】Jaworski P, Yu F, Carter R M, et al. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining[J]. Optics Express, 2015, 23(7): 8498-8506.

【34】Vincetti L, Setti V. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes[J]. Optics Express, 2012, 20(13): 14350-14361.

【35】Kolyadin A N, Kosolapov A F, Pryamikov A D, et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region[J]. Optics Express, 2013, 21(8): 9514-9519.

【36】Belardi W, Knight J C. Hollow antiresonant fibers with low bending loss[J]. Optics Express, 2014, 22(8): 10091-10096.

【37】Belardi W. Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range[J]. Journal of Lightwave Technology, 2015, 33(21): 4497-4503.

【38】Gao S F, Wang Y Y, Liu X L, et al. Bending loss characterization in nodeless hollow-core anti-resonant fiber[J]. Optics Express, 2016, 24(13): 14801-14811.

【39】Michieletto M, Lyngs J K, Jakobsen C, et al. Hollow-core fibers for high power pulse delivery[J]. Optics Express, 2016, 24(7): 7103-7119.

【40】Gao S F, Wang Y Y, Liu X L, et al. Nodeless hollow-core fiber for the visible spectral range[J]. Optics Letters, 2017, 42(1): 61-64.

【41】Debord B, Amsanpally A, Chafer M, et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers[J]. Optica, 2017, 4(2): 209-217.

【42】Hayes J R, Sandoghchi S R, Bradley T D, et al. Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications[J]. Journal of Lightwave Technology, 2017, 35(3): 437-442.

【43】Gao S F, Wang Y Y, Wang P. Silica-based modeless hollow-core fiber for broadband mid-IR guidance[C]∥Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 31 July-4 Aug. 2017, Singapore, Singapore, 2017: 1-2.

【44】Cao L, Gao S F, Peng Z G, et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 2018, 26(5): 5609-5615.

【45】Février S, Gérme F, Labruyère A, et al. Ultraviolet guiding hollow-core photonic crystal fiber[J]. Optics Letters, 2009, 34(19): 2888-2890.

【46】Hartung A, Kobelke J, Schwuchow A, et al. Double antiresonant hollow core fiber - guidance in the deep ultraviolet by modified tunneling leaky modes[J]. Optics Express, 2014, 22(16): 19131-19140.

【47】Hartung A, Kobelke J, Schwuchow A, et al. Low-loss single-mode guidance in large-core antiresonant hollow-core fibers[J]. Optics Letters, 2015, 40(14): 3432-3435.

【48】Gebert F, Frosz M H, Weiss T, et al. Damage-free single-mode transmission of deep-UV light in hollow-core PCF[J]. Optics Express, 2014, 22(13): 15388-15396.

【49】Gao S F, Wang Y Y, Ding W, et al. Hollow-core negative-curvature fiber for UV guidance[J]. Optics Letters, 2018, 43(6): 1347-1350.

【50】Yu F, Cann M, Brunton A, et al. Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery[J]. Optics Express, 2018, 26(8): 10879-10887.

【51】Poletti F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 2014, 22(20): 23807-23828.

【52】Hasan M I, Akhmediev N, Chang W. Positive and negative curvatures nested in an antiresonant hollow-core fiber[J]. Optics Letters, 2017, 42(4): 703-706.

【53】Chaudhuri S, van Putten L D, Poletti F, et al. Low loss transmission in negative curvature optical fibers with elliptical capillary tubes[J]. Journal of Lightwave Technology, 2016, 34(18): 4228-4231.

【54】Habib M S, Bang O, Bache M. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes[J]. Optics Express, 2015, 23(13): 17394-17406.

【55】Gao S F, Wang Y Y, Ding W, et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 2018, 9: 2828.

【56】Bradley T D, Hayes J R, Chen Y, et al. Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre[C]∥2018 European Conference on Optical Communication (ECOC), 23-27 Sept. 2018, Rome, Italy, 2018: 1-3.

【57】Pryamikov D, Kosolapov F, Alagashev K, et al. Hollow-core microstructured ‘revolver’ fibre for the UV spectral range[J]. Quantum Electronics, 2016, 46(12): 1129-1133.

【58】Yu F, Knight J C. Negative curvature hollow-core optical fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 146-155.

【59】Wang Y Y, Couny F, Light P S, et al. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF[J]. Optics Letters, 2010, 35(8): 1127-1129.

【60】Abdolvand A, Walser A M, Ziemienczuk M, et al. Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber[J]. Optics Letters, 2012, 37(21): 4362-4364.

【61】Gao S F, Wang Y Y, Wang P, Visible Raman generation from ambient air in a nodeless hollow-core fiber[C]. Conference on Lasers and Electro-Optics (CLEO), 2017: SM3M.2.

【62】Tani F, Belli F, Abdolvand A, et al. Generation of three-octave-spanning transient Raman comb in hydrogen-filled hollow-core PCF[J]. Optics Letters, 2015, 40(6): 1026-1029.

【63】Belli F, Abdolvand A, Chang W, et al. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber[J]. Optica, 2015, 2(4): 292-300.

【64】Mridha M K, Novoa D, Bauerschmidt S T, et al. Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled Kagomé photonic crystal fiber[J]. Optics Letters, 2016, 41(12): 2811-2814.

【65】Wang Z F, Yu F, Wadsworth W J, et al, Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica. 2014, 34(8): 0814004.
王泽锋, 于飞, William J Wadsworth, 等. 单程高增益1.9 μm光纤气体拉曼激光器[J]. 光学学报, 2014, 34(8): 0814004.

【66】Chen Y B, Gu B, Wang Z F, et al. 1.5μm fiber gas Raman laser source[J]. Acta Optica Sinica, 2016, 36(5): 0506002.
陈育斌, 顾博, 王泽锋, 等. 1.5μm光纤气体拉曼激光光源[J]. 光学学报, 2016, 36(5): 0506002.

【67】Chen Y B, Wang Z F, Gu B, et al. 1.5μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 2017, 37(5): 0514002.
陈育斌, 王泽锋, 顾博, 等. 1.5μm光纤乙烷气体拉曼激光放大器[J]. 光学学报, 2017, 37(5): 0514002.

【68】Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 2014, 11(10): 105807.

【69】Wang Z F, Gu B, Chen Y B, et al. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 19-μm fiber gas Raman source[J]. Applied Optics, 2017, 56(27): 7657.

【70】Gladyshev A V, Kosolapov A F, Khudyakov M M, et al. 4.4-μm Raman laser based on hollow-core silica fibre[J]. Quantum Electronics, 2017, 47(5): 491-494.

【71】Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 28 μm[J]. Optics Letters, 2018, 43(19): 4671-4674.

引用该论文

Gao Shoufei,Wang Yingying,Wang Pu. Research Progress on Hollow-Core Anti-Resonant Fiber and Gas Raman Laser Technology[J]. Chinese Journal of Lasers, 2019, 46(5): 0508014

高寿飞,汪滢莹,王璞. 反谐振空芯光纤及气体拉曼激光技术的研究进展[J]. 中国激光, 2019, 46(5): 0508014

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF