首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508002--1)

时间拉伸色散傅里叶变换在被动锁模光纤激光器研究中的应用

Applications of Time-Stretch Dispersion Fourier Transform Technique in Study on Passively Mode-Locked Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

时间拉伸色散傅里叶变换(TS-DFT)技术推动了锁模激光器中瞬态现象的研究,对于揭示复杂系统中的耗散动力学过程具有重要意义。介绍了TS-DFT技术的基本原理及其在数据采集和数据处理中存在的关键问题,总结了TS-DFT技术在被动锁模光纤激光器的类噪声脉冲与怪波、孤子爆炸、孤子束缚态、锁模自启动和矢量孤子等各类超快现象研究中的应用。

Abstract

The time-stretch dispersion Fourier transform (TS-DFT) technology promotes the study of transient phenomena in mode-locked lasers and is of great significance for revealing the dissipative dynamics in complex systems. In this paper, we first introduce the fundamental principles of TS-DFT technology and its key issues in data acquisition and data processing. Then we review the applications of TS-DFT technology in the study of various ultrafast phenomena in passively mode-locked fiber lasers, such as noise-like pulse and rogue wave, soliton explosion, soliton bound state, mode-locked self-starting, and vector solitons.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/cjl201946.0508002

所属栏目:“超快激光非线性光学”专题

基金项目:国家重点研发计划(2018YFB0504400)、国家自然科学基金(61775107,61322510,11674177)、天津市自然科学基金(16JCZDJC31000)

收稿日期:2019-02-14

修改稿日期:2019-03-21

网络出版日期:2019-03-29

作者单位    点击查看

王志:南开大学现代光学研究所, 天津市新型传感器与传感网络重点实验室, 天津 300350
贺瑞敬:南开大学现代光学研究所, 天津市新型传感器与传感网络重点实验室, 天津 300350
刘艳格:南开大学现代光学研究所, 天津市新型传感器与传感网络重点实验室, 天津 300350

联系人作者:王志(zhiwang@nankai.edu.cn)

【1】Hamik C T, Manz N, Steinbock O. Anomalous dispersion and attractive pulse interaction in the 1, 4-cyclohexanedione Belousov-Zhabotinsky reaction[J]. The Journal of Physical Chemistry A, 2001, 105(25): 6144-6153.

【2】Ankiewicz A. Dissipative solitons: from optics to biology and medicine[J]. Lecture Notes in Physics, 2008, 751.

【3】Melo F, Douady S. From solitary waves to static patterns via spatiotemporal intermittency[J]. Physical Review Letters, 1993, 71(20): 3283-3286.

【4】Denschlag J, Simsarian J E, Feder D L, et al. Generating solitons by phase engineering of a Bose-Einstein condensate[J]. Science, 2000, 287(5450): 97-101.

【5】Barland S, Tredicce J R, Brambilla M, et al. Cavity solitons as pixels in semiconductor microcavities[J]. Nature, 2002, 419(6908): 699-702.

【6】Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92.

【7】Chen J W, Zhao L M. Noise-like pulsed fiber lasers[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110002.
陈家旺, 赵鹭明. 类噪声脉冲光纤激光器研究现状及进展[J]. 激光与光电子学进展, 2017, 54(11): 110002.

【8】Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

【9】Wu H Y, Shi L, Ma T, et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(6): 0601008.
吴浩煜, 时雷, 马挺, 等. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光, 2017, 44(6): 0601008.

【10】Pang M, He W, Jiang X, et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons[J]. Nature Photonics, 2016, 10(7): 454-458.

【11】Solli D R, Jalali B. Analog optical computing[J]. Nature Photonics, 2015, 9(11): 704-706.

【12】Tong Y C, Chan L Y, Tsang H K. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope[J]. Electronics Letters, 1997, 33(11): 983-985.

【13】Muriel M A, Azaa J, Carballar A. Real-time Fourier transformer based on fiber gratings[J]. Optics Letters, 1999, 24(1): 1-3.

【14】Diebold E D, Hon N K, Tan Z W, et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide[J]. Optics Express, 2011, 19(24): 23809-23817.

【15】Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112.

【16】Mahjoubfar A, Churkin D V, Barland S, et al. Time stretch and its applications[J]. Nature Photonics, 2017, 11(6): 341-351.

【17】Runge A F J, Aguergaray C, Broderick N G R, et al. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers[J]. Optics Letters, 2013, 38(21): 4327-4330.

【18】Lecaplain C, Grelu P. Rogue waves among noiselike-pulse laser emission: an experimental investigation[J]. Physical Review A, 2014, 90(1): 013805.

【19】Runge A F J, Aguergaray C, Broderick N G R, et al. Raman rogue waves in a partially mode-locked fiber laser[J]. Optics Letters, 2014, 39(2): 319-322.

【20】Liu Z W, Zhang S M, Wise F W. Rogue waves in a normal-dispersion fiber laser[J]. Optics Letters, 2015, 40(7): 1366-1369

【21】Runge A F J, Broderick N G R, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser[J]. Optica, 2015, 2(1): 36-39.

【22】Wang Z H, Wang Z, Liu Y G, et al. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser[J]. Optics Express, 2016, 24(13): 14709-14716.

【23】Herink G, Kurtz F, Jalali B, et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 2017, 356(6333): 50-54.

【24】Ryczkowski P, Nrhi M, Billet C, et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser[J]. Nature Photonics, 2018, 12(4): 221-227.

【25】Krupa K, Nithyanandan K, Andral U, et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules[J]. Physical Review Letters, 2017, 118(24): 243901.

【26】Wang Z H, Wang Z, Liu Y G, et al. Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser[J]. Optics Letters, 2018, 43(3): 478-481.

【27】Liu X M, Yao X K, Cui Y D. Real-time observation of the buildup of soliton molecules[J]. Physical Review Letters, 2018, 121(2): 023905.

【28】Wang C. Dispersive fourier transformation for versatile microwave photonics applications[J]. Photonics, 2014, 1(4): 586-612.

【29】Hamdi S, Coillet A, Grelu P. Real-time characterization of optical soliton molecule dynamics in an ultrafast thulium fiber laser[J]. Optics Letters, 2018, 43(20): 4965-4968.

【30】Goda K, Solli D R, Tsia K K, et al. Theory of amplified dispersive Fourier transformation[J]. Physical Review A, 2009, 80(4):043821.

【31】Tsia K K, Goda K, Capewell D, et al. Performance of serial time-encoded amplified microscope[J]. Optics Express, 2010, 18(10):10016-10028.

【32】Wei X M, Li B W, Yu Y, et al. Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies[J]. Optics Express, 2017, 25(23): 29098-29120.

【33】Wang Z H, Wang Z, Liu Y G, et al. Generation and time jitter of the loose soliton bunch in a passively mode-locked fiber laser[J]. Chinese Optics Letters, 2017, 15(8): 080605.

【34】Horowitz M, Barad Y, Silberberg Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser[J]. Optics Letters, 1997, 22(11): 799-801.

【35】Solli D R, Ropers C, Koonath P, et al. Optical rogue waves[J]. Nature, 2007, 450(7172): 1054-1057.

【36】Dudley J M, Dias F, Erkintalo M, et al. Instabilities, breathers and rogue waves in optics[J]. Nature Photonics, 2014, 8(10): 755-764.

【37】Toenger S, Godin T, Billet C, et al. Emergent rogue wave structures and statistics in spontaneous modulation instability[J]. Scientific Reports, 2015, 5: 10380.

【38】Liu M, Cai Z R, Hu S, et al. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device[J]. Optics Letters, 2015, 40(20): 4767-4770.

【39】Wei X M, Xu Y Q, Wong K K Y. 1000-1400-nm partially mode-locked pulse from a simple all-fiber cavity[J]. Optics Letters, 2015, 40(13): 3005-3008.

【40】Cundiff S T, Soto-Crespo J M, Akhmediev N. Experimental evidence for soliton explosions[J]. Physical Review Letters, 2002, 88(7): 073903.

【41】Runge A F J, Broderick N G R, Erkintalo M. Dynamics of soliton explosions in passively mode-locked fiber lasers[J]. Journal of the Optical Society of America B, 2016, 33(1): 46.

【42】Liu M, Luo A P, Xu W C, et al. Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser[J]. Optics Letters, 2016, 41(17): 3912-3915.

【43】Liu M, Luo A P, Yan Y R, et al. Successive soliton explosions in an ultrafast fiber laser[J]. Optics Letters, 2016, 41(6): 1181-1184.

【44】Yu Y, Luo Z C, Kang J Q, et al. Mutually ignited soliton explosions in a fiber laser[J]. Optics Letters, 2018, 43(17): 4132-4135.

【45】Suzuki M, Boyraz O, Asghari H, et al. Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy[J]. Optics Letters, 2018, 43(8): 1862-1865.

【46】Soto-Crespo J M, Akhmediev N, Ankiewicz A. Pulsating, creeping, and erupting solitons in dissipative systems[J]. Physical Review Letters, 2000, 85(14): 2937.

【47】Akhmediev N, Soto-Crespo J M, Town G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach[J]. Physical Review E, 2001, 63(5): 056602.

【48】Soto-Crespo J M, Grapinet M, Grelu P, et al. Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser[J]. Physical Review E, 2004, 70(6): 066612.

【49】Wei Z W, Liu M, Ming S X, et al. Pulsating soliton with chaotic behavior in a fiber laser[J]. Optics Letters, 2018, 43(24): 5965-5968.

【50】Du Y Q, Xu Z W, Shu X W. Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser[J]. Optics Letters, 2018, 43(15): 3602-3605.

【51】Vodonos B, Bekker A, Smulakovsky V, et al. Experimental study of the stochastic nature of the pulsation self-starting process in passive mode locking[J]. Optics Letters, 2005, 30(20): 2787-2789.

【52】Vodonos B, Weill R, Gordon A, et al. Formation and annihilation of laser light pulse quanta in a thermodynamic-like pathway[J]. Physical Review Letters, 2004, 93(15): 153901.

【53】Gordon A, Fischer B. Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity[J]. Optics Communications, 2003, 223(1/2/33): 151-156.

【54】Gordon A, Fischer B. Phase transition theory of many-mode ordering and pulse formation in lasers[J]. Physical Review Letters, 2002, 89(10): 103901.

【55】Li H, Ouzounov D G, Wise F W. Starting dynamics of dissipative-soliton fiber laser[J]. Optics Letters, 2010, 35(14): 2403-2405.

【56】Herink G, Jalali B, Ropers C, et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate[J]. Nature Photonics, 2016, 10(5): 321-326.

【57】Yu Y, Li B W, Wei X M, et al. Spectral-temporal dynamics of multipulse mode-locking[J]. Applied Physics Letters, 2017, 110(20): 201107.

【58】Chen H J, Liu M, Yao J, et al. Soliton booting dynamics in an ultrafast anomalous dispersion fiber laser[J]. IEEE Photonics Journal, 2018, 10(2): 1-9.

【59】Chen H J, Liu M, Yao J, et al. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion[J]. Optics Express, 2018, 26(3): 2972-2982.

【60】Peng J S, Zeng H P. Build-up of dissipative optical soliton molecules via diverse soliton interactions[J]. Laser & Photonics Reviews, 2018, 12(8): 1800009.

【61】Sun S Q, Lin Z X, Li W, et al. Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser[J]. Optics Express, 2018, 26(16): 20888-20901.

【62】Wang G M, Chen G W, Li W L, et al. Decaying evolution dynamics of double-pulse mode-locking[J]. Photonics Research, 2018, 6(8): 825-829.

【63】Liu M, Luo A P, Luo Z C, et al. Dynamic trapping of a polarization rotation vector soliton in a fiber laser[J]. Optics Letters, 2017, 42(2): 330-333.

【64】Krupa K, Nithyanandan K, Grelu P. Vector dynamics of incoherent dissipative optical solitons[J]. Optica, 2017, 4(10): 1239-1244.

【65】He R J, Wang Z, Liu Y G. et al. Dynamic evolution of pulsating solitons in a dissipative system with the gain saturation effect[J]. Optics Express, 2018, 26(25): 33116-33128.

【66】Guo B. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics[Invited][J]. Chinese Optics Letters, 2018, 16(2): 020004.

引用该论文

Wang Zhi,He Ruijing,Liu Yange. Applications of Time-Stretch Dispersion Fourier Transform Technique in Study on Passively Mode-Locked Fiber Lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508002

王志,贺瑞敬,刘艳格. 时间拉伸色散傅里叶变换在被动锁模光纤激光器研究中的应用[J]. 中国激光, 2019, 46(5): 0508002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF