首页 > 论文 > 中国激光 > 46卷 > 5期(pp:501001--1)

基于反抛物线型光纤的TE01和TM01模式输出激光器

Anti-Parabolic-Fiber-Based Laser with TE01 and TM01 Mode Output

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种反抛物线型掺铒光纤,该光纤可以实现二阶模式组中简并矢量模式的有效分离。将其作为光纤激光器的增益介质,采用数值方法分析光纤中饵离子掺杂分布、饵离子掺杂浓度、光纤长度和抽运光功率对掺饵光纤激光器输出模式的影响。通过在光纤不同环形区域内掺杂饵离子,可以实现TE01模式或TM01模式的单独输出,并且激光器的斜率效率分别高达67.4%和63.5%,输出模式纯度分别高达99.97%和99.99%。所提的基于反抛物线型掺铒光纤的激光器具有斜率效率高、输出模式纯度高的优势,该光纤激光器可应用于高功率激光器、光纤通信和光纤传感等领域。

Abstract

An anti-parabolic erbium-doped fiber is proposed to effectively separate the degenerate vector modes in the second-order mode group. The proposed fiber is used as the gain medium of a laser, and the effects of erbium-dopant distribution, erbium-dopant concentration, fiber length, and pump power upon the output mode of the erbium-doped fiber laser are analyzed through numerical investigation. The TE01 or TM01 modes are obtained separately by doping erbium in different annular regions of the proposed fiber, and the slope efficiencies of the proposed fiber laser can reach 67.4% and 63.5%, with an output-mode purity reaching 99.97% and 99.99%, respectively. The proposed anti-parabolic-fiber-based erbium-doped laser has the merits of a high slope efficiency and high mode purity, and has many applications such as in high power lasers, optical-fiber communications, and optical-fiber sensing systems.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/cjl201946.0501001

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(61275092)

收稿日期:2018-11-19

修改稿日期:2019-01-06

网络出版日期:2019-01-28

作者单位    点击查看

刘儒雅:北京交通大学全光网及现代通信网教育部重点实验室光波技术研究所, 北京 100044
汤敏:北京交通大学全光网及现代通信网教育部重点实验室光波技术研究所, 北京 100044
曹敏:北京交通大学全光网及现代通信网教育部重点实验室光波技术研究所, 北京 100044
芈月安:北京交通大学全光网及现代通信网教育部重点实验室光波技术研究所, 北京 100044
简伟:北京交通大学全光网及现代通信网教育部重点实验室光波技术研究所, 北京 100044
任国斌:北京交通大学全光网及现代通信网教育部重点实验室光波技术研究所, 北京 100044

联系人作者:任国斌(gbren@bjtu.edu.cn)

【1】Sun B. High purity cylindrical vector beam all-fiber laser[D]. Hefei: University of Science and Technology of China, 2014.
孙彪. 高纯度轴对称偏振光束全光纤激光器[D]. 合肥: 中国科学技术大学, 2014.

【2】Li J L. Research on fiber laser source to generate single mode TM01 and TE01[D]. Beijing: Beijing Jiaotong University, 2014.
李觉灵. 单模输出TM01和TE01模式光纤激光源的研究[D]. 北京: 北京交通大学, 2014.

【3】Li Y M, Gong L, Li D, et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 2015, 42(1): 0101001.
李银妹, 龚雷, 李迪, 等. 光镊技术的研究现况[J]. 中国激光, 2015, 42(1): 0101001.

【4】Zhou Z H, Zhang Y L, Zhu L Q. Trapping and manipulation of microparticles using radially polarized beams[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(7): 1016-1022.
周哲海, 张玉灵, 祝连庆. 基于径向偏振光束的微粒捕获与操控[J]. 电子测量与仪器学报, 2016, 30(7): 1016-1022.

【5】Fatemi F K, Bashkansky M, Oh E, et al. Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding[J]. Optics Express, 2010, 18(1): 323-332.

【6】Yu A P. Study on super-oscillation focusing device for radially polarized light[D]. Chongqing: Chongqing University, 2017.
余安平. 径向偏振光超振荡聚焦器件研究[D]. 重庆: 重庆大学, 2017.

【7】Meng J X. Electron acceleration by an circularly polarized electromagnetic wave[D]. Beijing: Beijing University of Chemical Technology, 2016.
孟建勋. 圆极化电磁波加速带电粒子的机制研究[D]. 北京: 北京化工大学, 2016.

【8】Li J L, Ueda K I, Musha M, et al. Generation of radially polarized mode in Yb fiber laser by using a dual conical prism[J]. Optics Letters, 2006, 31(20): 2969-2971.

【9】Thirugnanasambandam M P, Senatsky Y, Ueda K I. Generation of radially and azimuthally polarized beams in Yb∶YAG laser with intra-cavity lens and birefringent crystal[J]. Optics Express, 2011, 19(3): 1905-1914.

【10】Zou L, Yao Y, Li J L. High-power, efficient and azimuthally polarized ytterbium-doped fiber laser[J]. Optics Letters, 2015, 40(2): 229-232.

【11】Lin D, Daniel J M O, Geceviius M, et al. Cladding-pumped ytterbium-doped fiber laser with radially polarized output[J]. Optics Letters, 2014, 39(18): 5359.

【12】Wei K Y, Zhang W D, Huang L G, et al. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions[J]. Optics Express, 2017, 25(3): 2733-2741.

【13】Liu T, Chen S P, Hou J. Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair[J]. Optics Letters, 2016, 41(24): 5692-5695.

【14】Zhou Y, Yan K, Chen R S, et al. Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating[J]. Applied Physics Letters, 2017, 110(16): 161104.

【15】Zhao Y H, Wang T X, Mou C B, et al. All-fiber vortex laser generated with few-mode long-period gratings[J]. IEEE Photonics Technology Letters, 2018, 30(8): 752-755.

【16】Wang F, Shi F, Wang T, et al. Method of generating femtosecond cylindrical vector beams using broadband mode converter[J]. IEEE Photonics Technology Letters, 2017, 29(9): 747-750.

【17】Wan H D, Wang J, Zhang Z X, et al. Passively mode-locked ytterbium-doped fiber laser with cylindrical vector beam generation based on mode selective coupler[J]. Journal of Lightwave Technology, 2018, 36(16): 3403-3407.

【18】Wei J C. Theoretical research and design of vortex fiber[D]. Beijing: Beijing Jiaotong University, 2017.
卫俊超. 涡旋光纤的理论研究与设计[D]. 北京: 北京交通大学, 2017.

【19】Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15): 18044-18055.

【20】Liao S Y, Gong M L, Zhang H T. Selection of doping radius for part-doped fibers[J]. Chinese Journal of Lasers, 2009, 36(11): 2836-2841.
廖素英, 巩马理, 张海涛. 部分掺杂光纤掺杂半径的选择[J]. 中国激光, 2009, 36(11): 2836-2841.

【21】Townsend J E, Poole S B, Payne D N. Solution-doping technique for fabrication of rare-earth-doped optical fibers[J]. Electronics Letters, 1987, 23(7): 329-331.

【22】Gong M L, Yuan Y Y, Li C, et al. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers[J]. Optics Express, 2007, 15(6): 3236-3246.

引用该论文

Liu Ruya,Tang Min,Cao Min,Mi Yuean,Jian Wei,Ren Guobin. Anti-Parabolic-Fiber-Based Laser with TE01 and TM01 Mode Output[J]. Chinese Journal of Lasers, 2019, 46(5): 0501001

刘儒雅,汤敏,曹敏,芈月安,简伟,任国斌. 基于反抛物线型光纤的TE01和TM01模式输出激光器[J]. 中国激光, 2019, 46(5): 0501001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF