首页 > 论文 > 光学学报 > 41卷 > 1期(pp:0112001--1)

光学自由曲面面形检测方法进展与展望

Progress and Prospect of Optical Freeform Surface Measurement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光学自由曲面具有强大的矫正像差和优化系统结构的能力,被誉为现代光学系统的变革性元件。但是,自由曲面面形过于复杂,其高精度检测存在巨大的难度,这限制了自由曲面面形的制造水平,其大规模应用也受到限制。目前,光学自由曲面的检测技术主要是从非球面检测技术发展而来的。回顾了近年来光学自由曲面检测方法的发展历程,着重分析了几种典型的检测方法及其特点,并展望了自由曲面检测技术的未来发展趋势。

Abstract

An optical freeform surface has been recognized as a revolutionary element in a modern optical system because of its powerful ability of simultaneous aberration correction and structural optimization. However, the complex shape of its surface brings enormous difficulties and challenges to the precise measurement, which limits its manufacture level and has been one of the bottlenecks of its broad applications. Currently, the main measurement methods of an optical freeform surface are mainly developed from the ideas of aspheric measurement technologies. In this paper, we reviewed the development of the optical freeform surface measurement methods, especially focused on several typical measurement methods and their characteristics, and looked forward to the development trend of freeform surface measurement in future.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/AOS202141.0112001

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金、装备发展部预研领域基金;

收稿日期:2020-05-15

修改稿日期:2020-07-06

网络出版日期:2021-01-01

作者单位    点击查看

朱日宏:南京理工大学电子工程与光电技术学院, 江苏 南京 210094南京理工大学先进固体激光工业和信息化部重点实验室, 江苏 南京 210094
孙越:南京理工大学电子工程与光电技术学院, 江苏 南京 210094南京理工大学先进固体激光工业和信息化部重点实验室, 江苏 南京 210094
沈华:南京理工大学电子工程与光电技术学院, 江苏 南京 210094南京理工大学先进固体激光工业和信息化部重点实验室, 江苏 南京 210094

联系人作者:朱日宏(zhurihong@njust.edu.cn); 沈华(edward_bayun@163.com);

备注:国家自然科学基金、装备发展部预研领域基金;

【1】Wills S. Freeform optics: notes from the revolution [J]. Optics & Photonics News. 2017, 28(7): 34-41.

【2】Thompson K P, Rolland J P. Freeform optical surfaces: a revolution in imaging optical design [J]. Optics & Photonics News. 2012, 23(6): 30-35.

【3】Wei S L, Zhu Z B, Fan Z C, et al. Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination [J]. Optics Express. 2019, 27(12): A779-A789.

【4】Wu R M, Ding Z H, Yang L, et al. Precise light control in highly tilted geometry by freeform illumination optics [J]. Optics Letters. 2019, 44(11): 2887-2890.

【5】Zhu Z B, Ma D L, Hu Q M, et al. Catadioptric freeform optical system design for LED off-axis road illumination applications [J]. Optics Express. 2018, 26(2): A54-A65.

【6】Wu H B, Zhang X M, Ge P, et al. A high-efficiency freeform reflector for a light-emitting diode low-beam headlamp [J]. Lighting Research & Technology. 2016, 48(8): 1005-1016.

【7】Wang Q F, Cheng D W, Wang Y T, et al. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements [J]. Applied Optics. 2013, 52(7): C88.

【8】Meng X X, Liu W Q, Zhang D L, et al. Design of wide field-of-view head-mounted display optical system with double freeform surfaces [J]. Infrared and Laser Engineering. 2016, 45(4): 0418004.
孟祥翔, 刘伟奇, 张大亮, 等. 双自由曲面大视场头盔显示光学系统设计 [J]. 红外与激光工程. 2016, 45(4): 0418004.

【9】Wei L D, Li Y C, Jing J J, et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface [J]. Optics Express. 2018, 26(7): 8550-8565.

【10】Liu J, Huang W. Optical system design of reflective head mounted display using freeform surfaces [J]. Infrared and Laser Engineering. 2016, 45(10): 1018001.
刘军, 黄玮. 反射式自由曲面头盔显示器光学系统设计 [J]. 红外与激光工程. 2016, 45(10): 1018001.

【11】Wang J H, Liang Y C, Xu M. Design of a see-through head-mounted display with a freeform surface [J]. Journal of the Optical Society of Korea. 2015, 19(6): 614-618.

【12】Bian Y X, Li H F, Wang Y F, et al. Method to design two aspheric surfaces for a wide field of view imaging system with low distortion [J]. Applied Optics. 2015, 54(27): 8241-8247.

【13】Zhao W, Liu X, Li H. Design of laser projection display illumination system based on freeform surface array [J]. Acta Optica Sinica. 2018, 38(6): 0622001.
赵伟, 刘旭, 李海峰. 基于自由曲面阵列的激光投影显示照明系统设计 [J]. 光学学报. 2018, 38(6): 0622001.

【14】Yu B H, Tian Z H, Su D Q, et al. Design and engineering verification of an ultrashort throw ratio projection system with a freeform mirror [J]. Applied Optics. 2019, 58(13): 3575-3581.

【15】Yu B H. Research on key technology of ultra-short-focus projection objective system based on freeform surfaces [D]. Beijing: University of Chinese Academy of Sciences. 2019.
于百华. 基于自由曲面的超短焦投影物镜关键技术研究 [D]. 北京: 中国科学院大学. 2019.

【16】Nie Y F, Mohedano R, Benitez P, et al. Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors [J]. Applied Optics. 2016, 55(14): 3794-3800.

【17】Cayrel M. E-ELT optomechanics: overview [J]. Proceedings of SPIE. 2012, 8444: 84441X.

【18】Howard J M, Wolbach S. Improving the performance of three-mirror imaging systems with Freeform Optics . [C]∥Renewable Energy and the Environment, Tucson, Arizona. Washington, D. C.: OSA. 2013, FT2B: 6.

【19】Meng Q Y, Wang H Y, Wang K J, et al. Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror [J]. Applied Optics. 2016, 55(32): 8962-8970.

【20】Meng Q Y, Wang H Y, Liang W J, et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view [J]. Applied Optics. 2019, 58(3): 609-615.

【21】Zhang X, Xu Y C. Study on free-form optical testing [J]. Chinese Optics and Applied Optics Abstracts. 2008, 1(1): 92-99.
张新, 许英朝. 光学自由曲面的检测方法 [J]. 中国光学与应用光学. 2008, 1(1): 92-99.

【22】Li A, Wang Y G, Wu Z Q, et al. Data processing of high-order aspheric surface measurements using CMM in optical fabrication [J]. Chinese Optics. 2020, 13(2): 302-312.
李昂, 王永刚, 邬志强, 等. 光学加工过程中高次非球面的三坐标测量数据处理 [J]. 中国光学. 2020, 13(2): 302-312.

【23】Werner K. XENOS-the new standard [J]. Advanced Technologies in Mechanics. 2014, 1(1): 28-31.

【24】Spitz S N. Requicha A A G. Multiple-goals path planning for coordinate measuring machines . [C]∥Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, April 24-28, 2000, San Francisco, CA, USA. New York: IEEE. 2000, 2322-2327.

【25】Spyridi A J. Requicha A A G. Automatic programming of coordinate measuring machines . [C]∥Proceedings of the 1994 IEEE International Conference on Robotics and Automation, May 8-13, 1994, San Diego, CA, USA. New York: IEEE. 1994, 1107-1112.

【26】Fang Y, Chen K N, Lin Z H. Stereo vision and CMM-integrated intelligent inspection system in reverse engineering [J]. Proceedings of SPIE. 1998, 3521: 115-122.

【27】Gao H, Zhang X, Fang F. Axicon profile metrology using contact stylus method [J]. International Journal of Nanomanufacturing. 2018, 14(2): 177-191.

【28】Stover E, Berger G, Wendel M, et al. Fast optical 3D form measurement of aspheres including determination of thickness and wedge and decenter errors [J]. Proceedings of SPIE. 2015, 9633: 96331O.

【29】Berger G, Petter J. Non-contact metrology of aspheric surfaces based on MWLI technology [J]. Proceedings of SPIE. 2013, 8884: 88840V.

【30】Henselmans R, Cacace L A. Kramer G F Y, et al. The NANOMEFOS non-contact measurement machine for freeform optics [J]. Precision Engineering. 2011, 35(4): 607-624.

【31】Bos A, Henselmans R. Rosielle P C J N, et al. Nanometre-accurate form measurement machine for E-ELT M1 segments [J]. Precision Engineering. 2015, 40: 14-25.

【32】Anderson D S, Burge J H. Swing-arm profilometry of aspherics [J]. Proceedings of SPIE. 1995, 2536: 169-179.

【33】Su P, Oh C J, Parks R E, et al. Swing-arm optical CMM for aspherics [J]. Proceedings of SPIE. 2009, 7426: 74260J.

【34】Burge J H, Benjamin S, Caywood D, et al. Fabrication and testing of 1.4-m convex off-axis aspheric optical surfaces [J]. Proceedings of SPIE. 2009, 7426: 74260L.

【35】Wang Y, Su P, Parks R E, et al. Swing arm optical coordinate-measuring machine: high precision measuring ground aspheric surfaces using a laser triangulation probe [J]. Optical Engineering. 2012, 51(7): 073603.

【36】Jia L D, Wang J W, Zheng Z W, et al. Uncertainty analysis on swing-arm profilometer for optical aspherics [J]. China Mechanical Engineering. 2009, 20(17): 2040-2044.
贾立德, 王家伍, 郑子文, 等. 光学非球面形摆臂式测量不确定度分析 [J]. 中国机械工程. 2009, 20(17): 2040-2044.

【37】Jing H W, Lin C Q, Fan B, et al. Measurement of an off-axis parabolic mirror using coordinates measurement machine and swing arm profilometer during the grinding process [J]. Proceedings of SPIE. 2012, 8415: 84150K.

【38】Wei Z W, Jing H W, Kuang L, et al. Error separation technique for measuring aspheric surface based on dual probes [J]. Proceedings of SPIE. 2013, 8905: 89051S.

【39】Xiong L, Luo X, Liu Z Y, et al. Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics [J]. Optical Engineering. 2016, 55(7): 074108.

【40】Xiong L, Luo X, Liu Z Y, et al. Measurement of 2 m SiC asphere mirror based on swing arm profilometer [J]. Acta Optica Sinica. 2015, 35(12): 1212002.
熊玲, 罗霄, 刘振宇, 等. 2 m量级SiC非球面反射镜的摆臂轮廓检测 [J]. 光学学报. 2015, 35(12): 1212002.

【41】Xiong L. Research on swing-arm profilometer test for large-aperture complex optical surface [D]. Beijing: University of Chinese Academy of Sciences. 2017.
熊玲. 大口径复杂光学曲面的摆臂式轮廓测量术研究 [D]. 北京: 中国科学院大学. 2017.

【42】Neal D R, Armstrong D J, Tim Turner W. Wavefront sensors for control and processing monitoring in optics manufacture [J]. Proceedings of SPIE. 1997, 2993: 211-220.

【43】Guo W J, Zhao L P, Tong C S, et al. Adaptive centroid-finding algorithm for freeform surface measurements [J]. Applied Optics. 2013, 52(10): D75-D83.

【44】Aftab M, Choi H, Liang R G, et al. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations [J]. Optics Express. 2018, 26(26): 34428-34441.

【45】Zhang J P. Research on testing aspherical surface using Shack-Hartmann wavefront sensor [D]. Beijing: University of Chinese Academy of Sciences. 2012.
张金平. 夏克-哈特曼波前传感器检测大口径非球面应用研究 [D]. 北京: 中国科学院大学. 2012.

【46】Wu Q Q, Zhang X D, Fang F Z, et al. Shape measurement of the cubic phase plate with wavefront sensing technology [J]. Optical Technique. 2014, 40(2): 105-112.
吴青青, 张效栋, 房丰洲, 等. 基于波前传感法的立方相位板面形测量 [J]. 光学技术. 2014, 40(2): 105-112.

【47】Knauer M C, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces [J]. Proceedings of SPIE. 2004, 5457: 366-376.

【48】Reich C, Ritter R, Thesing J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection [J]. Optical Engineering. 2000, 39(1): 224-231.

【49】Su X Y, Zhang Q C, Chen W J. Three-dimensional imaging based on structured illumination [J]. Chinese Journal of Lasers. 2014, 41(2): 0209001.
苏显渝, 张启灿, 陈文静. 结构光三维成像技术 [J]. 中国激光. 2014, 41(2): 0209001.

【50】Cui Y J, Zhang W F, Li J X, et al. A method of Gamma correction in fringe projection measurement [J]. Acta Optica Sinica. 2015, 35(1): 0112002.
崔艳军, 张文峰, 李建欣, 等. 条纹投影三维测量的Gamma畸变校正方法 [J]. 光学学报. 2015, 35(1): 0112002.

【51】Song Q, Chen Y, Zhu R G, et al. Research of 3D measurement technology based on gray code projection [J]. Laser & Optoelectronics Progress. 2014, 51(3): 031203.
宋倩, 陈悦, 朱荣刚, 等. 基于格雷编码投影的三维测量技术研究 [J]. 激光与光电子学进展. 2014, 51(3): 031203.

【52】Feng S J, Zuo C, Yin W, et al. Application of deep learning technology to fringe projection 3D imaging [J]. Infrared and Laser Engineering. 2020, 49(3): 0303018.
冯世杰, 左超, 尹维, 等. 深度学习技术在条纹投影三维成像中的应用 [J]. 红外与激光工程. 2020, 49(3): 0303018.

【53】Long X, Zhong Y X, Li R J, et al. 3-D surface integration in structured light 3-D scanning [J]. Journal of Tsinghua University (Science and Technology). 2002, 42(4): 477-480.
龙玺, 钟约先, 李仁举, 等. 结构光三维扫描测量的三维拼接技术 [J]. 清华大学学报(自然科学版). 2002, 42(4): 477-480.

【54】Pan W, Zhao Y. New method of phase calculation of fringe projection measurement [J]. Journal of Shanghai Jiao Tong University. 2003, 37(7): 1068-1071.
潘伟, 赵毅. 提高光栅投影测量精度的相移精确测量法 [J]. 上海交通大学学报. 2003, 37(7): 1068-1071.

【55】a neural network. Complex object 3D measurement based on phase-shifting, [J]. Optics Communications. 2009, 282(14): 2699-2706.

【56】H?usler G, Faber C, Olesch E. Deflectometry vs. interferometry [J]. Proceedings of SPIE. 2013, 8788: 87881C.

【57】Su P, Wang S S, Khreishi M, et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments [J]. Proceedings of SPIE. 2012, 8450: 84500W.

【58】Tang Y, Su X Y, Liu Y K, et al. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry [J]. Optics Express. 2008, 16(19): 15090-15096.

【59】Tang Y, Su X Y, Wu F, et al. A novel phase measuring deflectometry for aspheric mirror test [J]. Optics Express. 2009, 17(22): 19778-19784.

【60】Zhao W C, Su X Y, Liu Y K, et al. Testing an aspheric mirror based on phase measuring deflectometry [J]. Optical Engineering. 2009, 48(10): 103603.

【61】Tang Y, Su X Y, Liu Y K, et al. Three-dimensional shape measurement of aspheric mirror based on fringe reflection [J]. Acta Optica Sinica. 2009, 29(4): 965-969.
唐燕, 苏显渝, 刘元坤, 等. 基于条纹反射的非球面镜三维面形测量 [J]. 光学学报. 2009, 29(4): 965-969.

【62】Wan X J, Bin B Y, Xie S P, et al. Development of an integrated freeform optics measurement system based on phase measuring deflectometry [J]. Proceedings of SPIE. 2018, 1084: 1084710.

【63】Guo C F, Hu A D. Three-dimensional shape measurement of aspheric mirrors with null phase measuring deflectometry [J]. Optical Engineering. 2019, 58(10): 104102.

【64】Yuan T. Study on fringe-reflection optical surface shape measurement technology for large aspheric mirror [D]. Beijing: University of Chinese Academy of Sciences. 2016.
袁婷. 基于条纹反射法的大口径非球面反射镜面形检测技术研究 [D]. 北京: 中国科学院大学. 2016.

【65】MacGovern A J, Wyant J C. Computer generated holograms for testing optical elements [J]. Applied Optics. 1971, 10(3): 619-624.

【66】Kino M, Kurita M. Interferometric testing for off-axis aspherical mirrors with computer-generated holograms [J]. Applied Optics. 2012, 51(19): 4291-4297.

【67】Su P, Kang G G, Tan Q F, et al. Estimation and optimization of computer-generated hologram in null test of freeform surface [J]. Chinese Optics Letters. 2009, 7(12): 1097-1100.

【68】Shen H, Zhu R H, Gao Z S, et al. Design and fabrication of computer-generated holograms for testing optical freeform surfaces [J]. Chinese Optics Letters. 2013, 11(3): 032201.

【69】Huang Y, Ma J, Zhu R H, et al. Investigation of measurement uncertainty of optical freeform surface based on computer-generated hologram [J]. Acta Optica Sinica. 2015, 35(11): 1112007.
黄亚, 马骏, 朱日宏, 等. 基于计算全息的光学自由曲面测量不确定度分析 [J]. 光学学报. 2015, 35(11): 1112007.

【70】Zhu D Y, Zhang X J. Design of high-precision phase computer-generated-hologram [J]. Acta Optica Sinica. 2015, 35(7): 0712002.
朱德燕, 张学军. 高精度相位型计算全息图的设计 [J]. 光学学报. 2015, 35(7): 0712002.

【71】Zeng X F, Zhang X J, Xue D L, et al. Mapping distortion correction in freeform mirror testing by computer-generated hologram [J]. Applied Optics. 2018, 57(34): F56-F61.

【72】Chaudhuri R, Papa J C, Rolland J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology [J]. Optics Letters. 2019, 44(8): 2000-2003.

【73】Hao Q, Wang S P, Hu Y. Design method of a liquid crystal based computer-generated hologram for freeform surface measurement . [C]∥2017 22nd Microoptics Conference (MOC), November 19-22, 2017, Tokyo, Japan. New York: IEEE. 2017, 244-245.

【74】Hu Y, Wang S P, Wang Z, et al. Liquid crystal hologram for cylinder lens measurement [J]. Proceedings of SPIE. 2019, 1118: 111850W.

【75】Peterhansel S, Pruss C, Osten W. Phase errors in high line density CGH used for aspheric testing: beyond scalar approximation [J]. Optics Express. 2013, 21(10): 11638-11651.

【76】Ma J, Pruss C, H?fner M, et al. Systematic analysis of the measurement of cone angles using high line density computer-generated holograms [J]. Optical engineering. 2011, 50(5): 055801.

【77】Xie Y J, Mao X L, Li J P, et al. Optical design and fabrication of an all-aluminum unobscured two-mirror freeform imaging telescope [J]. Applied Optics. 2020, 59(3): 833-840.

【78】Pang Z H, Feng L J, Ding J T, et al. Design and fabrication of CGH for 820 mm diameter tertiary mirror surface figure testing without center hole [J]. Proceedings of SPIE. 2019, 1084: 1084019.

【79】Li S J, Zhang J, Liu W G, et al. Measurement investigation of an off-axis aspheric surface via a hybrid compensation method [J]. Applied Optics. 2018, 57(28): 8220-8227.

【80】Gan Z H, Peng X Q, Chen S Y, et al. Fringe discretization and manufacturing analysis of a computer-generated hologram in a null test of the freeform surface [J]. Applied Optics. 2018, 57(34): 9913-9921.

【81】Gan Z H, Peng X Q, Chen S Y. Key technology of CGH for complex surface measurement and calibration [J]. China Metrology. 2019, 6: 80-85.
甘子豪, 彭小强, 陈善勇. 用于复杂曲面检验校准的CGH关键技术 [J]. 中国计量. 2019, 6: 80-85.

【82】He Y W, Hou X, Wu F, et al. Analysis of spurious diffraction orders of computer-generated hologram in symmetric aspheric metrology [J]. Optics Express. 2017, 25(17): 20556-20572.

【83】Liu H L, Zhu Q D, Hao Q, et al. Design of novel part-compensating lens used in aspheric testing [J]. Proceedings of SPIE. 2003, 5253: 480-484.

【84】Sullivan J J, Greivenkamp J E. Design of partial nulls for testing of fast aspheric surfaces [J]. Proceedings of SPIE. 2007, 6671: 66710W.

【85】Liu D, Yang Y Y, Luo Y J, et al. Non-null interferometric aspheric testing with partial null lens and reverse optimization [J]. Proceedings of SPIE. 2009, 7426: 74260M.

【86】Fuerschbach K, Thompson K P, Rolland J P. Interferometric measurement of a concave, φ-polynomial, Zernike mirror [J]. Optics Letters. 2014, 39(1): 18-21.

【87】Dou Y M, Yuan Q, Gao Z S, et al. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror [J]. Journal of Optics. 2018, 20(6): 065702.

【88】Zhang L, Zhou S, Li D, et al. Model-based adaptive non-null interferometry for freeform surface metrology [J]. Chinese Optics Letters. 2018, 16(8): 081203.

【89】Zhang L, Zhou S, Li J S, et al. Model calibration by multi-null constraint for an optical freeform surface adaptive interferometer [J]. Applied Optics. 2020, 59(3): 726-734.

【90】Zhang L, Li C, Huang X L, et al. Compact adaptive interferometer for unknown freeform surfaces with large departure [J]. Optics Express. 2020, 28(2): 1897-1913.

【91】Zhang L, Li D, Liu Y, et al. Flexible interferometry for optical aspheric and free form surfaces [J]. Optical Review. 2017, 24(6): 677-685.

【92】Liu D, Shi T, Zhang L, et al. Reverse optimization reconstruction of aspheric figure error in a non-null interferometer [J]. Applied Optics. 2014, 53(24): 5538-5546.

【93】Tian C, Yang Y Y, Zhuo Y M. Generalized data reduction approach for aspheric testing in a non-null interferometer [J]. Applied Optics. 2012, 51(10): 1598-1604.

【94】Shi T, Liu D, Zhang L, et al. Reverse optimization reconstruction method for aspheric testing in a nonnull interferometer [J]. Acta Optica Sinica. 2014, 34(6): 0612007.
师途, 刘东, 张磊, 等. 非球面非零位检测的逆向优化面形重构 [J]. 光学学报. 2014, 34(6): 0612007.

【95】Shi T, Zang Z M, Liu D, et al. Retrace error correction for non-null testing of optical aspheric surface [J]. Acta Optica Sinica. 2016, 36(8): 0812006.
师途, 臧仲明, 刘东, 等. 光学非球面面形非零位检测的回程误差校正 [J]. 光学学报. 2016, 36(8): 0812006.

【96】Shi T, Liu D, Zhou Y H, et al. Practical retrace error correction in non-null aspheric testing: a comparison [J]. Optics Communications. 2017, 383: 378-385.

【97】Hao Q, Wang S P, Hu Y, et al. Virtual interferometer calibration method of a non-null interferometer for freeform surface measurements [J]. Applied Optics. 2016, 55(35): 9992-10001.

【98】Zang Z M, Liu D, Bai J, et al. Misalignment correction for free-form surface in non-null interferometric testing [J]. Optics Communications. 2019, 437: 204-213.

【99】Zhang L, Zhou S, Li J S, et al. Deep neural network based calibration for freeform surface misalignments in general interferometer [J]. Optics Express. 2019, 27(23): 33709-33723.

【100】Zhang L, Li C, Zhou S, et al. Enhanced calibration for freeform surface misalignments in non-null interferometers by convolutional neural network [J]. Optics Express. 2020, 28(4): 4988-4999.

【101】Chow W W, Lawrence G N. Method for subaperture testing interferogram reduction [J]. Optics Letters. 1983, 8(9): 468-470.

【102】Kuechel M F. Interferometric measurement of rotationally symmetric aspheric surfaces [J]. Proceedings of SPIE. 2007, 1031: 103160Q.

【103】Hou X, Wu F, Yang L, et al. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces [J]. Applied Optics. 2006, 45(15): 3442-3455.

【104】Hou X, Wu F, Yang L, et al. Experimental study on measurement of aspheric surface shape with complementary annular subaperture interferometric method [J]. Optics Express. 2007, 15(20): 12890-12899.

【105】Chen S Y, Li S Y, Dai Y F, et al. Experimental study on subaperture testing with iterative stitching algorithm [J]. Optics Express. 2008, 16(7): 4760-4765.

【106】Wen Y F, Cheng H B, Tam H, et al. Modified stitching algorithm for annular subaperture stitching interferometry for aspheric surfaces [J]. Applied Optics. 2013, 52(23): 5686-5694.

【107】Zhang L, Liu D, Shi T, et al. Aspheric subaperture stitching based on system modeling [J]. Optics Express. 2015, 23(15): 19176-19188.

【108】Zhang L, Tian C, Liu D, et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement [J]. Applied Optics. 2014, 53(25): 5755-5762.

【109】Fleig J F, Murphy P E. Measuring a nanometer-precision asphere with subaperture stitching interferometry . [C]∥Frontiers in Optics, Rochester, New York. Washington, D. C.: OSA. 2006, OFTuA6.

【110】Murphy P, Fleig J, Forbes G, et al. Subaperture stitching interferometry for testing mild aspheres [J]. Proceedings of SPIE. 2006, 6293: 62930J.

【111】Supranowitz C, Lormeau J P, Maloney C, et al. Freeform metrology using subaperture stitching interferometry [J]. Proceedings of SPIE. 2016, 1015: 101510D.

【112】Supranowitz C, Maloney C, Murphy P, et al. Enhanced resolution and accuracy of freeform metrology through Subaperture Stitching Interferometry [J]. Proceedings of SPIE. 2017, 1044: 1044818.

【113】Murphy P, Supranowitz C. Freeform testability considerations for subaperture stitching interferometry [J]. Proceedings of SPIE. 2019, 11175: 111750Z.

【114】Hyun S, Je S, Kim G H. High precision interferometric measurement of freeform surfaces from the well-defined sub-aperture surface profiles [J]. Proceedings of SPIE. 2019, 1117: 111752B.

【115】Yan L S, Wang X K, Zheng L G, et al. Experimental study on subaperture testing with iterative triangulation algorithm [J]. Optics Express. 2013, 21(19): 22628-22644.

【116】Chen S Y, Xue S, Dai Y F, et al. Subaperture stitching test of large steep convex spheres [J]. Optics Express. 2015, 23(22): 29047-29058.

【117】Chen S Y, Wu C C, Tie G P, et al. Stitching test of large flats by using two orthogonally arranged wavefront interferometers [J]. Applied Optics. 2017, 56(33): 9193-9198.

【118】Liu D, Zhou Y H, Bai J, et al. Aspheric and free-form surfaces test with non-null sub-aperture stitching [J]. Proceedings of SPIE. 2016, 1002: 100210N.

【119】Zang Z M, Bai J, Liu D, et al. Interferometric measurement of freeform surfaces using irregular subaperture stitching [J]. Measurement Science and Technology. 2020, 31(5): 055202.

【120】Garbusi E, Pruss C, Liesener J, et al. New technique for flexible and rapid measurement of precision aspheres [J]. Proceedings of SPIE. 2007, 6616: 661629.

【121】Baer G, Schindler J, Pruss C, et al. Fast and flexible non-null testing of aspheres and free-form surfaces with the tilted-wave-interferometer [J]. International Journal of Optomechatronics. 2014, 8(4): 242-250.

【122】Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing [J]. Optics Letters. 2008, 33(24): 2973-2975.

【123】Garbusi E, Osten W. Perturbation methods in optics: application to the interferometric measurement of surfaces [J]. Journal of the Optical Society of America A. 2009, 26(12): 2538-2549.

【124】Baer G, Garbusi E, Lyda W, et al. Automated surface positioning for a non-null test interferometer [J]. Optical engineering. 2010, 49(9): 095602.

【125】Fortmeier I, Stavridis M, Wiegmann A, et al. Analytical Jacobian and its application to tilted-wave interferometry [J]. Optics Express. 2014, 22(18): 21313-21325.

【126】Baer G, Schindler J, Pruss C, et al. Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces [J]. Optics Express. 2014, 22(25): 31200-31211.

【127】Fortmeier I, Stavridis M, Wiegmann A, et al. Evaluation of absolute form measurements using a tilted-wave interferometer [J]. Optics Express. 2016, 24(4): 3393-3404.

【128】Schindler J, Pruss C, Osten W. Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry [J]. Optical Engineering. 2019, 58(7): 074105.

【129】Beisswanger R, Pruss C, Schober C, et al. Tilted wave interferometer in common path configuration: challenges and realization [J]. Proceedings of SPIE. 2019, 1105: 110561G.

【130】Shen H, Li J, Zhu R H, et al. Design of non-null interferometer based on point source array for testing freeform surface [J]. Acta Optica Sinica. 2013, 33(12): 1222003.
沈华, 李嘉, 朱日宏, 等. 基于点源阵列的自由曲面非零位干涉检测系统设计方法 [J]. 光学学报. 2013, 33(12): 1222003.

【131】Shen H. Research on key techniques of tilted wave interferometer used in the measurement of freeform surfaces [D]. Nanjing: Nanjing University of Science and Technology. 2014.
沈华. 基于多重倾斜波面的光学自由曲面非零位干涉测量关键技术研究 [D]. 南京: 南京理工大学. 2014.

【132】Shen H, Zhu R H, Chen L, et al. Assessment of optical freeform surface error in tilted-wave-interferometer by combining computer-generated wave method and retrace errors elimination algorithm [J]. Optical Engineering. 2015, 54(7): 074105.

【133】Li J, Shen H, Zhu R H. Method of alignment error control in free-form surface metrology with the tilted-wave-interferometer [J]. Optical Engineering. 2016, 55(4): 044101.

【134】Li J, Shen H, Zhu R H, et al. Interferometry with flexible point source array for measuring complex freeform surface and its design algorithm [J]. Optics Communications. 2018, 417: 67-75.

【135】Li X L, Shen H, Li J, et al. Optical path difference calibration method of optical fiber array point source generator in tilted-wave-interferometer [J]. Acta Optica Sinica. 2018, 38(5): 0512002.
李小柳, 沈华, 李嘉, 等. 倾斜波面干涉仪中光纤阵列型点源发生器的光程误差标定方法 [J]. 光学学报. 2018, 38(5): 0512002.

【136】Lu Q. Point source generator for dynamic generation of ideal interference point source array [D]. Nanjing: Nanjing University of Science and Technology. 2017.
路晴. 动态生成理想干涉点源阵列的点源发生器的研究 [D]. 南京: 南京理工大学. 2017.

【137】Gao J M, Shen H, Li J, et al. A flexible angle compensation method for freeform surface testing based on tip/tilt mirror [J]. Optics Communications. 2019, 444: 21-27.

【138】Li J, Shen H, Wang J S, et al. Common-path interferometry with tilt carrier for surface measurement of complex optics [J]. Applied Optics. 2019, 58(8): 1991-1997.

【139】Wang J S. Design and development of common-path interferometer for complex surface based on optical fiber array [D]. Nanjing: Nanjing University of Science and Technology. 2019.
王劲松. 基于光纤阵列的复杂面形元件共光路型干涉测量系统设计与研制 [D]. 南京: 南京理工大学. 2019.

引用该论文

Zhu Rihong,Sun Yue,Shen Hua. Progress and Prospect of Optical Freeform Surface Measurement[J]. Acta Optica Sinica, 2021, 41(1): 0112001

朱日宏,孙越,沈华. 光学自由曲面面形检测方法进展与展望[J]. 光学学报, 2021, 41(1): 0112001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF