首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1028003--1)

基于多通道温度与发射率分离算法的敦煌场地红外特性研究

Infrared Characteristics of Dunhuang Site Based on Multichannel Temperature and Emissivity Separation Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着我国热红外遥感技术的发展,近年来具有热红外波段探测能力的对地观测卫星陆续发射升空。卫星在轨运行后,除利用星载定标黑体进行定标外,还需开展校正场辐射定标来检验或替代星上定标结果,为后端产品应用提供可靠的高精度定标条件[1]。目前,我国针对卫星遥感器热红外通道的在轨绝对辐射定标,主要还是采用人工野外测试获取场地热红外辐射特性的方法,该方法不仅耗费大量人力物力和时间,同时也受天气条件的制约。为提高卫星遥感器场地定标的频次和实效性,场地自动化观测辐射定标的研究日益引起人们的重视[2-4]。场地温度和发射率是用于表征场地热红外特性的两个重要参数,也是利用辐射校正场作为标准辐射源进行卫星遥感器热红外波段绝对辐射定标的两个关键影响因子。因此,如何从自动化设备获取的场地辐射数据中分离出高精度的场地温度和发射率,是场地自动化观测辐射定标的重要研究内容。

Abstract

A multichannel thermal infrared radiometer, called CE312, was used to study the infrared characteristics of the Dunhuang radiometric correction field. Site surface radiance and the downwelling atmospheric radiance were obtained by measuring the target site and the infrared standard plate. The multichannel temperature and emissivity separation algorithm was used to calculate the site channel emissivity and temperature. Finally, the optimal offset method was employed to obtain the site emissivity spectrum. The same target area was measured using a 102F Fourier transform infrared spectrometer. The results separated by the iterative spectral smooth temperature and emissivity algorithm were then compared with those separated by the multichannel temperature and emissivity separation algorithm. The comparison results show that the maximum deviation of the channel emissivity obtained by the two methods is within 0.011, and the site temperature deviation is within 0.104 K, indicating that the usage of the multichannel thermal infrared radiometer can separate the site temperature and emissivity in addition to obtaining high-precision thermal infrared site parameters. This test provides a reference for the automated observational absolute radiometric calibration of the satellite remote sensing thermal infrared band based on the Dunhuang radiometric correction field.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1028003

所属栏目:遥感与传感器

基金项目:民用航天技术预先研究项目;

收稿日期:2019-04-16

修改稿日期:2019-06-24

网络出版日期:2019-10-01

作者单位    点击查看

张允祥:中国科学院安徽光学精密机械研究所,中国科学院通用光学辐射定标与表征重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
李新:中国科学院安徽光学精密机械研究所,中国科学院通用光学辐射定标与表征重点实验室, 安徽 合肥 230031
韦玮:中国科学院安徽光学精密机械研究所,中国科学院通用光学辐射定标与表征重点实验室, 安徽 合肥 230031
翟文超:中国科学院安徽光学精密机械研究所,中国科学院通用光学辐射定标与表征重点实验室, 安徽 合肥 230031
张艳娜:中国科学院安徽光学精密机械研究所,中国科学院通用光学辐射定标与表征重点实验室, 安徽 合肥 230031
郑小兵:中国科学院安徽光学精密机械研究所,中国科学院通用光学辐射定标与表征重点实验室, 安徽 合肥 230031

联系人作者:李新(xli@aiofm.ac.cn)

备注:民用航天技术预先研究项目;

【1】Zhang Y, Qi G L and Rong Z G. The model and method of radiometric calibration for satellite infrared remote sensor. 21-22(2015).
张勇, 祁广利, 戎志国. 卫星红外遥感器辐射定标模型与方法. 21-22(2015).

【2】Qiu G G, Li X, Wei W et al. Experiment and analysis of on-orbit radiometric calibration for remote sensors based on in-site automated observation technology. Acta Optica Sinica. 36(7), (2016).
邱刚刚, 李新, 韦玮 等. 基于场地自动化观测技术的遥感器在轨辐射定标试验与分析. 光学学报. 36(7), (2016).

【3】Lü J Y, He M Y, Chen L et al. Automated radiation calibration method based on Dunhuang radiometric calibration site. Acta Optica Sinica. 37(8), (2017).
吕佳彦, 何明元, 陈林 等. 基于敦煌辐射校正场的自动化辐射定标方法. 光学学报. 37(8), (2017).

【4】Zhang M, Wei W, Zhang Y N et al. High-frequency on-orbit radiometric calibration of SNPP VIIRS based on in-site automated observation technology. Acta Photonica Sinica. 48(4), (2019).
张孟, 韦玮, 张艳娜 等. 基于场地自动化观测技术的SNPP VIIRS高频次在轨辐射定标. 光子学报. 48(4), (2019).

【5】Rong Z G, Zhang Y X, Jia F M et al. On-orbit radiometric calibration of fengyun geostationary meteorological satellite’s infrared channels based on sea-surface measurements in the South China Sea. Journal of Infrared and Millimeter Waves. 26(2), 97-101(2007).
戎志国, 张玉香, 贾凤敏 等. 利用南海水面开展我国静止气象卫星红外通道在轨辐射定标. 红外与毫米波学报. 26(2), 97-101(2007).

【6】Tian G L, Liu Q H, Chen L F et al. Thermal remote sensing. 208-213(2014).
田国良, 柳钦火, 陈良富 等. 热红外遥感. 208-213(2014).

【7】Kahle A B and Rowan L C. Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah. Geology. 8(5), 234-239(1980).

【8】Gillespie A R. Lithologic mapping of silicate rocks using TIMS. [C]∥The TIMS Data Users’ Workshop, June 18-19, 1985. Pasadena, California: JPL Publication. 29-44(1985).

【9】Kealy P S and Hook S J. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Transactions on Geoscience and Remote Sensing. 31(6), 1155-1164(1993).

【10】Matsunaga T. A temperature-emissivity separation method using an empirical relationship between the mean, the maximum, and the minimum of the thermal infrared emissivity spectrum. International Journal of the Remote Sensing. 14(3), 230-241(1994).

【11】Gillespie A, Rokugawa S, Matsunaga T et al. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing. 36(4), 1113-1126(1998).

【12】Watson K. Spectral ratio method for measuring emissivity. Remote Sensing of Environment. 42(2), 113-116(1992).

【13】Watson K. Two-temperature method for measuring emissivity. Remote Sensing of Environment. 42(2), 117-121(1992).

【14】Borel C C. Iterative retrieval of surface emissivity and temperature for a hyperspectral sensor. [C]∥Proceedings for the First JPL Workshop on Remote Sensing of Land Surface Emissivity, May 6-8, 1997, Pasadena, California. [S.l.: s.n.]. (1997).

【15】Sobrino J A and Caselles V. A field method for measuring the thermal infrared emissivity. ISPRS Journal of Photogrammetry and Remote Sensing. 48(3), 24-31(1993).

【16】Zhang Y, Li Y, Rong Z G et al. Field measurement of gobi surface emissivity spectrum at Dunhuang calibration site of China. Spectroscopy and Spectral Analysis. 29(5), 1213-1217(2009).
张勇, 李元, 戎志国 等. 中国遥感卫星辐射校正场陆表热红外发射率光谱野外测量. 光谱学与光谱分析. 29(5), 1213-1217(2009).

【17】Hook S J and Kahle A B. The micro Fourier transform interferometer (μFTIR): a new field spectrometer for acquisition of infrared data of natural surfaces. Remote Sensing of Environment. 56(3), 172-181(1996).

【18】Hook S J. ASTER spectral library [2019-06-27].http:∥speclib.jpl.nasa.gov. (0).

【19】Salisbury J W and Wald A. D’Aria D M. Thermal-infrared remote sensing and Kirchhoff’s law: 1. Laboratory measurements. Journal of Geophysical Research: Solid Earth. 99(B6), 11897-11911(1994).

【20】Payan V and Royer A. Analysis of temperature emissivity separation (TES) algorithm applicability and sensitivity. International Journal of Remote Sensing. 25(1), 15-37(2004).

【21】Hu X Q, Rong Z G, Qiu K M et al. In-flight radiometric calibration for thermal channels of FY-1C and FY-2B meteorological satellite sensors using Qinghai Lake. Chinese Journal of Space Science. 21(4), 370-380(2001).
胡秀清, 戎志国, 邱康睦 等. 利用青海湖对FY-1C、FY-2B气象卫星热红外通道进行在轨辐射定标. 空间科学学报. 21(4), 370-380(2001).

【22】Sicard M and Spyak P R. Characterization of a thermal-infrared field radiometer. Proceedings of SPIE. 3117, 269-280(1997).

【23】41-. Czapla-Myers J S. Automated ground-based methodology in support of vicarious calibration. Tucson: The University of Arizona. 43, 54-57(2006).

【24】Xu J. Research on calibration of ambient temperature blackbodies on a thermal-infrared standard radiometer. Hefei: University of Chinese Academy of Sciences. 61-64(2013).
徐骏. 基于热红外标准辐射亮度计的常温黑体定标方法研究. 合肥: 中国科学院大学. 61-64(2013).

【25】Hulley G and Hook S. HyspIRI level-2 thermal infrared (TIR) land surface temperature and emissivity algorithm theoretical basis document Pasadena, California, USA: Jet Propulsion Laboratory,. National Aeronautics and Space Administration. (2011).

引用该论文

Yunxiang Zhang,Xin Li,Wei Wei,Wenchao Zhai,Yanna Zhang,Xiaobing Zheng. Infrared Characteristics of Dunhuang Site Based on Multichannel Temperature and Emissivity Separation Algorithm[J]. Acta Optica Sinica, 2019, 39(10): 1028003

张允祥,李新,韦玮,翟文超,张艳娜,郑小兵. 基于多通道温度与发射率分离算法的敦煌场地红外特性研究[J]. 光学学报, 2019, 39(10): 1028003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF