等离激元纳米材料超快激光光热形变原理及应用 (封面文章) (特邀综述)
Fundamentals and Applications of Ultrafast Laser Induced Photothermal Reshaping of Plasmonic Nanomaterials (Cover Paper) (Invited)
摘要
超快激光具有极短的脉宽和极高的峰值强度,已被广泛应用于等离激元纳米材料的加工。在极高的激光功率密度下,等离激元纳米材料中的自由电子吸收入射光子能量成为热电子,然后通过电子与晶格的耦合作用使得晶格温度升高,诱导等离激元纳米材料产生光热形变。根据激光功率密度与熔化沸腾阈值的关系,综述了等离激元材料的三种光热形变——阈值熔化、表面原子扩散和激光烧蚀的不同原理;同时还介绍了等离激元纳米材料超快激光光热形变在多维光存储、结构色彩色打印和信息加密隐写等领域的应用。
Abstract
Owing to its advantages of ultrashort pulse width and extremely high peak intensity, ultrafast lasers have been widely used in fabricating plasmonic nanomaterials. Laser beams with extremely high power densities heat the free electrons in plasmonic nanomaterials, thereby increasing the lattice temperature and causing photothermal reshaping. Depending on the power density of the laser beam and the melting/boiling threshold, we review three types of photothermal reshaping mechanisms: complete melting above threshold, surface atom diffusion below melting temperature, and ablation. The exemplary applications of photothermal reshaping of plasmonic nanomaterials in optical data storage, plasmonic color printing, and steganography are reviewed.
中图分类号:O436
所属栏目:“超快激光加工”专题—穷理探幽基础篇
基金项目:国家科技部重点研发计划、国家自然科学基金、广东省珠江人才创新团队项目、广东省自然科学基金、广州市科技计划;
收稿日期:2020-04-13
修改稿日期:2020-04-30
网络出版日期:2020-06-01
作者单位 点击查看
姜美玲:暨南大学光子技术研究院广东省光纤传感与通信重点实验室, 广东 广州 511443
冯紫微:暨南大学光子技术研究院广东省光纤传感与通信重点实验室, 广东 广州 511443
欧阳旭:暨南大学光子技术研究院广东省光纤传感与通信重点实验室, 广东 广州 511443
曹耀宇:暨南大学光子技术研究院广东省光纤传感与通信重点实验室, 广东 广州 511443
李向平:暨南大学光子技术研究院广东省光纤传感与通信重点实验室, 广东 广州 511443
联系人作者:李向平(xiangpingli@jnu.edu.cn)
备注:国家科技部重点研发计划、国家自然科学基金、广东省珠江人才创新团队项目、广东省自然科学基金、广州市科技计划;
【1】Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization [J]. Optics Letters. 1997, 22(2): 132-134.
【2】Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing [J]. Light: Science & Applications. 2014, 3(4): e149.
【6】Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size [J]. Nature Communications. 2013, 4: 2061.
【8】Maier S A. Plasmonics: fundamentals and applications [M]. New York: Springer. 2007.
【9】Gu B Y. Surface plasmon subwave length optics: principles and novel effects [J]. Physics. 2007, 36(4): 280-287.
顾本源. 表面等离子体亚波长光学原理和新颖效应 [J]. 物理. 2007, 36(4): 280-287.
【10】Tong L M, Xu H X. Surface plasmons: mechanisms, applications and perspectives [J]. Physics. 2012, 41(9): 582-588.
童廉明, 徐红星. 表面等离激元: 机理、应用与展望 [J]. 物理. 2012, 41(9): 582-588.
【13】Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology [J]. Nature Nanotechnology. 2015, 10(1): 25-34.
【15】Zijlstra P. Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods [J]. Nature. 2009, 459(7245): 410-413.
【16】Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam [J]. Nature Communications. 2012, 3: 998.
【17】Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage [J]. Light: Science & Applications. 2014, 3(5): e177.
【18】Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage [J]. Opto-Electronic Engineering. 2019, 46(3): 180584.
欧阳旭, 徐毅, 冼铭聪, 等. 基于无序金纳米棒编码的多维光信息存储 [J]. 光电工程. 2019, 46(3): 180584.
【19】Jiang M L, Zhang M S, Li X P, et al. Research progress of super-resolution optical data storage [J]. Opto-Electronic Engineering. 2019, 46(3): 180649.
姜美玲, 张明偲, 李向平, 等. 超分辨光存储研究进展 [J]. 光电工程. 2019, 46(3): 180649.
【20】Kristensen A. Yang J K W, Bozhevolnyi S I, et al. Plasmonic colour generation [J]. Nature Reviews Materials. 2017, 2: 16088.
【21】Zhu X L, Vannahme C, H?jlund-Nielsen E, et al. Plasmonic colour laser printing [J]. Nature Nanotechnology. 2016, 11(4): 325-329.
【22】Roberts A S, Novikov S M, Yang Y Q, et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays [J]. ACS Nano. 2019, 13(1): 71-77.
【23】Zhang Y N, Shi L, Hu D J, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing [J]. Nanoscale Horizons. 2019, 4(3): 601-609.
【24】Kumar K, Duan H G, Hegde R S, et al. Printing colour at the optical diffraction limit [J]. Nature Nanotechnology. 2012, 7(9): 557-561.
【25】Hu D J, Lu Y D, Cao Y Y, et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy [J]. ACS Nano. 2018, 12(9): 9233-9239.
【26】Feng Z W, Hu D J, Liang L L, et al. Laser-splashed plasmonic nanocrater for ratiometric upconversion regulation and encryption [J]. Advanced Optical Materials. 2019, 7(19): 1900610.
【27】Xue J C, Zhou Z K, Lin L M, et al. Perturbative countersurveillance metaoptics with compound nanosieves [J]. Light: Science & Applications. 2019, 8: 101.
【28】Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption [J]. Nature Photonics. 2020, 14(2): 102-108.
【29】Zijlstra P. Photothermal properties of gold nanorods and their application to five-dimensional optical recording [D]. Melbourne: Swinburne University of Technology. 2009.
【30】Link S, Wang Z L. El-Sayed M A. How does a gold nanorod melt? [J]. The Journal of Physical Chemistry B. 2000, 104(33): 7867-7870.
【31】Link S, Burda C, Nikoobakht B, et al. How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study [J]. Chemical Physics Letters. 1999, 315(1/2): 12-18.
【32】Link S. El-Sayed M A. Spectroscopic determination of the melting energy of a gold nanorod [J]. The Journal of Chemical Physics. 2001, 114(5): 2362-2368.
【33】Zijlstra P. Chon J W M, Gu M. White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods [J]. Physical Chemistry Chemical Physics. 2009, 11(28): 5915-5921.
【34】Taylor A B, Siddiquee A M. Chon J W M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion [J]. ACS Nano. 2014, 8(12): 12071-12079.
【35】Inasawa S, Sugiyama M, Yamaguchi Y. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting [J]. The Journal of Physical Chemistry B. 2005, 109(8): 3104-3111.
【36】Leitz K H, Redlingsh?fer B, Reg Y, et al. Metal ablation with short and ultrashort laser pulses [J]. Physics Procedia. 2011, 12: 230-238.
【37】Wang X, Kuchmizhak A, Li X, et al. Laser-induced translative hydrodynamic mass snapshots: noninvasive characterization and predictive modeling via mapping at nanoscale [J]. Physical Review Applied. 2017, 8(4): 044016.
【38】Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and polarized multilevel optical data storage [J]. Nanoscale. 2019, 11(5): 2447-2452.
【39】Ren H, Li X, Zhang Q, et al. On-chip noninterference angular momentum multiplexing of broadband light [J]. Science. 2016, 352(6287): 805-809.
引用该论文
Zhang Mingsi,Jiang Meiling,Feng Ziwei,Ouyang Xu,Cao Yaoyu,Li Xiangping. Fundamentals and Applications of Ultrafast Laser Induced Photothermal Reshaping of Plasmonic Nanomaterials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111401
张明偲,姜美玲,冯紫微,欧阳旭,曹耀宇,李向平. 等离激元纳米材料超快激光光热形变原理及应用[J]. 激光与光电子学进展, 2020, 57(11): 111401