首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1001001--1)

高精度同步飞秒和皮秒脉冲产生技术

High-Precision Synchronous Femtosecond and Picosecond Pulse Generation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一款重复频率精确锁定的飞秒脉冲和皮秒脉冲双路输出光纤激光器。该激光器采用输出为近傅里叶变换极限的皮秒脉冲作为种子源,其脉冲宽度为21 ps,重复频率为40 MHz。该种子脉冲经1∶1分束后,分别注入飞秒和皮秒脉冲放大链路中。通过有效管理脉冲放大过程中的非线性和色散,实现了宽带光谱飞秒脉冲和窄带光谱皮秒脉冲的同步输出。其中,飞秒脉冲放大链路是将皮秒种子脉冲先经过单模光纤功率放大器,而后在50 m保偏单模光纤中利用自相位调制效应进行光谱展宽,光谱展宽至6.12 nm;进一步采用光栅对去啁啾后,得到了脉冲宽度为483 fs、平均功率为210 mW的飞秒脉冲输出。皮秒脉冲放大链路的皮秒种子脉冲经过功率预放大、脉冲选单至10 MHz后,由200/40光子晶体光纤主放大器进行功率提升,得到了脉冲宽度为25 ps、单脉冲能量为1.4 μJ、光谱宽度为0.86 nm的皮秒脉冲输出。此外,通过采用压电陶瓷精确控制和步进电机范围控制相结合的方式,实现了对皮秒种子源谐振腔重复频率的长时间精确锁定。激光器开启并达到热平衡后,8 h测量时间内重复频率峰峰值抖动小于3 mHz,标准偏差为0.31 mHz。

Abstract

We demonstrate a dual-output ultrashort pulse fiber laser with their repetition rate precisely locked. This laser source employs a mode-locked picosecond laser capable of delivering near transform-limited pulses with 21 ps duration at a repetition rate of 40 MHz. After the seed pulse is split 1∶1, it is injected into the femtosecond and picosecond pulse amplification links respectively. By effectively managing the nonlinearity and dispersion in the pulse amplification process, the synchronous output of broadband spectral femtosecond pulse and narrowband spectral picosecond pulse is realized. In the path of femtosecond pulses, a length of 50 m polarization-maintaining single-mode fiber is used to promote the spectral broadening of amplified pulses, and its spectral width is broadened to 6.12 nm owing to the effect of self-phase modulation. Then, a pair of bulk gratings is applied to de-chirp the pulse to 483 fs duration with 210 mW average power. For the other optical path, the seed pulses are firstly pre-amplified and then selected to 10 MHz repetition rate. The 200/40 photonic crystal fiber acts as the gain fiber in main amplifier to further boost the pulses, generating 25 ps pulse duration with 1.4 μJ energy and 0.86 nm spectral width. In addition, the repetition rate long-term stabilization is realized by the combination of piezoelectric translator for precise control and stepping motor for range control. When laser system warms up, the peak-to-peak fluctuation of pulse repetition rate is less than 3 mHz within 8 h, and the corresponding standard deviation is calculated to be 0.31 mHz.

广告组5 - 光束分析仪
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.1001001

所属栏目:激光器件与激光物理

基金项目:国家重点研发计划;

收稿日期:2020-04-02

修改稿日期:2020-05-13

网络出版日期:2020-10-01

作者单位    点击查看

钱富琛:上海理工大学光电信息与计算机工程学院, 上海 200093
郭政儒:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
董文乾:上海理工大学光电信息与计算机工程学院, 上海 200093
胡晓蕾:上海理工大学光电信息与计算机工程学院, 上海 200093
陈飞:上海理工大学光电信息与计算机工程学院, 上海 200093
郝强:上海理工大学光电信息与计算机工程学院, 上海 200093
曾和平:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062济南量子技术研究院, 山东 济南 250101

联系人作者:郝强(qianghao@usst.edu.cn)

备注:国家重点研发计划;

【1】Rohwetter P, Yu J, Méjean G, et al. Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes [J]. Journal of Analytical Atomic Spectrometry. 2004, 19(4): 437-444.Rohwetter P, Yu J, Méjean G, et al. Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes [J]. Journal of Analytical Atomic Spectrometry. 2004, 19(4): 437-444.

【2】Wang Y L, Yang L H, Lin J R, et al. Absolute distance measurement based on coherent detection by femtosecond optical frequency comb [J]. Acta Optica Sinica. 2019, 39(1): 0112003.
王一霖, 杨凌辉, 林嘉睿, 等. 基于飞秒光学频率梳相关探测的绝对测距 [J]. 光学学报. 2019, 39(1): 0112003.

【3】Hu X B, Hao Q, Guo Z R, et al. Dicing of sapphire wafer with all-fiber picosecond laser [J]. Chinese Journal of Lasers. 2017, 44(1): 0102016.
胡小豹, 郝强, 郭政儒, 等. 全光纤皮秒激光切割蓝宝石晶圆的实验研究 [J]. 中国激光. 2017, 44(1): 0102016.

【4】Zheng S K, Yang K W, Ao J P, et al. Advances in fiber laser sources for coherent Raman scattering microscopy [J]. Chinese Journal of Lasers. 2019, 46(5): 0508008.
郑世凯, 杨康文, 敖建鹏, 等. 光纤式相干拉曼散射成像光源研究进展 [J]. 中国激光. 2019, 46(5): 0508008.

【5】Wei Z Y. The 2005 Nobel prize in physics and optical frequency comb techniques [J]. Physics. 2006, 35(3): 213-217.
魏志义. 2005年诺贝尔物理学奖与光学频率梳 [J]. 物理. 2006, 35(3): 213-217.
Wei Z Y. The 2005 Nobel prize in physics and optical frequency comb techniques [J]. Physics. 2006, 35(3): 213-217.
魏志义. 2005年诺贝尔物理学奖与光学频率梳 [J]. 物理. 2006, 35(3): 213-217.

【6】Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science. 2000, 288(5466): 635-640.

【7】Jia Y, Zhao N J, Liu W Q, et al. Continuous online detection method of heavy metals in water based on LIBS technology [J]. Chinese Journal of Lasers. 2018, 45(6): 0611001.

【8】Angel S M, Stratis D N, Eland K L, et al. LIBS using dual- and ultra-short laser pulses [J]. Fresenius'''' Journal of Analytical Chemistry. 2001, 369(3/4): 320-327.

【9】Balachninaitē O, Baskevicius A, Stankeviciūtē K, et al. Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses [J]. Lithuanian Journal of Physics. 2010, 50(1): 105-110.

【10】Elsayed K, Imam H, Harfoosh A, et al. Design and construction of Q-switched Nd∶YAG laser system for LIBS measurements [J]. Optics & Laser Technology. 2012, 44(1): 130-135.

【11】Yu X, Luo J Q, Xiao X S, et al. Research progress of high-power ultrafast fiber lasers [J]. Chinese Journal of Lasers. 2019, 46(5): 0508007.
余霞, 罗佳琪, 肖晓晟, 等. 高功率超快光纤激光器研究进展 [J]. 中国激光. 2019, 46(5): 0508007.

【12】Lu Y F, Wang Y, Liu B, et al. 1.5 MW peak power, fiber-solid hybrid amplification MOPA lasers [J]. Chinese Journal of Lasers. 2015, 42(2): 0202009.
陆云峰, 王毅, 刘斌, 等. 1.5 MW峰值功率光纤-固体混合放大MOPA激光系统 [J]. 中国激光. 2015, 42(2): 0202009.

【13】Fermann M E, Hofer M, Haberl F, et al. Additive-pulse-compression mode locking of a neodymium fiber laser [J]. Optics Letters. 1991, 16(4): 244-246.

【14】Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power [J]. Optics Letters. 2010, 35(2): 94-96.

【15】Lesparre F, Gomes J T, Délen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique [J]. Optics Letters. 2016, 41(7): 1628-1631.

【16】Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier [J]. Optics Express. 2004, 12(7): 1313-1319.

【17】Stutzki F, Jansen F, Liem A, et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality [J]. Optics Letters. 2012, 37(6): 1073-1075.

【18】Li P, Shi H X, Fu C, et al. High power nanosecond pulsed ytterbium-doped fiber laser for laser cleanning [J]. Laser & Optoelectronics Progress. 2018, 55(12): 121406.
李磐, 师红星, 符聪, 等. 激光清洗用高功率纳秒脉冲掺镱光纤激光器 [J]. 激光与光电子学进展. 2018, 55(12): 121406.

【19】Wang S J, Zhang Z L, Cao C, et al. Nanosecond pulse laser output with average power of 761 W and pulse energy of 17.5 mJ based on domestic fiber [J]. Chinese Journal of Lasers. 2019, 46(12): 1215001.
王世杰, 张志伦, 曹驰, 等. 利用国产光纤实现平均功率761 W、脉冲能量17.5 mJ纳秒脉冲激光输出 [J]. 中国激光. 2019, 46(12): 1215001.

【20】He M Y, Li M, Yuan S, et al. High-power femtosecond self-similar fiber amplification system [J]. Chinese Journal of Lasers. 2020, 47(3): 0308001.
贺明洋, 李敏, 袁帅, 等. 高功率飞秒自相似光纤激光放大系统 [J]. 中国激光. 2020, 47(3): 0308001.

【21】Huang P, Gan Z B, Li W Q, et al. Four-outputs Nd: glass pump source for large aperture Ti∶sapphire amplifier [J]. Chinese Journal of Lasers. 2018, 45(8): 0801001.
黄培, 甘泽彪, 李文启, 等. 用于大口径钛宝石放大器的四路钕玻璃抽运源 [J]. 中国激光. 2018, 45(8): 0801001.

【22】Lin H Y, Wu M Y, Sun D, et al. Research progress of green lasers based on quasi-phase-matched intracavity frequency doubling in PPMgLN [J]. Laser & Optoelectronics Progress. 2019, 56(19): 190001.
林洪沂, 吴铭钰, 孙栋, 等. 准相位匹配PPMgLN腔内倍频绿激光器研究进展 [J]. 激光与光电子学进展. 2019, 56(19): 190001.

【23】Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped- and divided-pulse Sagnac femtosecond fiber amplifier [J]. Optics Letters. 2015, 40(1): 89-92.

【24】Zhao M, Hao Q, Guo Z R, et al. Compact fiber-solid picosecond laser source with kilohertz repetition rate [J]. Chinese Journal of Lasers. 2018, 45(4): 0401010.
赵明, 郝强, 郭政儒, 等. 结构紧凑的kHz重复频率光纤-固体皮秒激光光源 [J]. 中国激光. 2018, 45(4): 0401010.

引用该论文

Qian Fuchen,Guo Zhengru,Dong Wenqian,Hu Xiaolei,Chen Fei,Hao Qiang,Zeng Heping. High-Precision Synchronous Femtosecond and Picosecond Pulse Generation[J]. Chinese Journal of Lasers, 2020, 47(10): 1001001

钱富琛,郭政儒,董文乾,胡晓蕾,陈飞,郝强,曾和平. 高精度同步飞秒和皮秒脉冲产生技术[J]. 中国激光, 2020, 47(10): 1001001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF