首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:152201--1)

全反式超短脉冲测量系统的光学设计

Optical Design of Total-Reflective Ultra-Short-Pulse Measurement System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于超短脉冲测量系统中存在透射元件,脉冲经过测量系统时将被展宽,因此测量结果中存在较大的误差。针对脉冲测量中被展宽的问题,设计了一种全反式超短脉冲测量系统,可实现对更短的超短脉冲的测量。所设计的系统利用菲涅耳双面镜产生时间延迟,利用柱面反射镜、薄晶体和光栅产生光谱,避免了系统中色散的产生。在满足采样率的前提下,对频率分辨光学开关(FROG)迹线采样范围进行分析,获得测量系统所需的时间延迟和倍频带宽,并以此为约束条件,推导了待测脉冲的脉冲宽度与菲涅耳双面镜和柱面反射镜参数的关系。

Abstract

While passing through an ultra-short-pulse measurement system, the pulse will be broadened owing to the presence of transmission elements. The broadening of the pulse results in significant errors in the final measurement results. To address this problem, a total-reflective ultra-short-pulse measurement system is designed to realize the measurement of shorter ultra-short pulse. In this system, Fresnel bi-mirror is used to generate time delays and a cylindrical mirror, thin crystals, and gratings are used to generate spectra, preventing the generation of dispersion in the system. Under the premise of satisfying the sampling rate requirement, the sampling range of the frequency-resolved optical gating trace is analyzed to obtain the required time delay and frequency-doubling bandwidth. With this constraint, the relationship between the width of the pulse to be measured and parameters of Fresnel bi-mirror and cylindrical mirror is deduced herein.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.152201

所属栏目:光学设计与制造

基金项目:黑龙江省自然科学基金(F2016023);

收稿日期:2019-02-19

修改稿日期:2019-03-07

网络出版日期:2019-08-01

作者单位    点击查看

程广真:哈尔滨理工大学应用科学学院, 黑龙江 哈尔滨 150080
张留洋:哈尔滨理工大学应用科学学院, 黑龙江 哈尔滨 150080
浦绍质:哈尔滨理工大学应用科学学院, 黑龙江 哈尔滨 150080
曲玉秋:黑龙江大学物理科学与技术学院, 黑龙江 哈尔滨 150080
李倩茹:哈尔滨理工大学应用科学学院, 黑龙江 哈尔滨 150080
于泽:哈尔滨理工大学应用科学学院, 黑龙江 哈尔滨 150080

联系人作者:张留洋(johnien@163.com)

备注:黑龙江省自然科学基金(F2016023);

【1】Li S L and Ye Y K. Development of femtosecond laser direct writing waveguides in transparent optical materials. Laser Technology. 36(6), 783-787(2012).
李士玲, 叶永凯. 飞秒激光直写透明光学材料光波导的研究进展. 激光技术. 36(6), 783-787(2012).

【2】Ma J, Zhu Y and Yang K M. Metal ion reduction induced by femtolaser two-photon absorption. Laser Technology. 34(3), 395-397(2010).
马竞, 朱煜, 杨开明. 应用飞秒激光双光子吸收还原金属离子. 激光技术. 34(3), 395-397(2010).

【3】Sheng Z M and Zhang J. Schemes for electron acceleration by laser-driven plasma waves. High Energy Physics and Nuclear Physics. 30(s1), 153-155(2006).
盛政明, 张杰. 超短强激光脉冲驱动等离子体波加速电子方案. 高能物理与核物理. 30(s1), 153-155(2006).

【4】Bumaliya A and Zhang B. Generation of VUV ultrashort pulses and their applications in ultrafast dynamics. Journal of Atomic and Molecular Physics. 33(2), 293-299(2016).
张冰. VUV超短脉冲的产生及其在超快动力学中的应用. 原子与分子物理学报. 33(2), 293-299(2016).

【5】Liu H. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave and the application in the laboratory astrophysical physics. Beijing: Chinese Academy of Engineering Physics. (2004).
刘红. 带电粒子在强激光和强磁场中的共振加速机制及其在实验天体物理中的应用. 北京: 中国工程物理研究院. (2004).

【6】Nabekawa Y, Furukawa Y, Okino T et al. Frequency-resolved optical gating technique for retrieving the amplitude of a vibrational wavepacket. Scientific Reports. 5, (2015).

【7】Trebino R. DeLong K W, Fittinghoff D N, et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Review of Scientific Instruments. 68(9), 3277-3295(1997).

【8】Okamura A, Sakakibara Y, Omoda E et al. Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG). Journal of the Optical Society of America B. 32(3), 400-406(2015).

【9】Iaconis C and Walmsley I A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Optics Letters. 23(10), 792-794(1998).

【10】Gallmann L, Sutter D H, Matuschek N et al. Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Optics Letters. 24(18), 1314-1316(1999).

【11】Gallet V, Pariente G, Kahaly S et al. Spatio-temporal characterization techniques of high-power femtosecond laser chains. Proceedings of SPIE. 8972, (2014).

【12】Yu H. Study on measurement of femtosecond laser pulse width. Laser Technology. 37(5), 679-681(2013).
于洪. 飞秒激光脉冲宽度测量研究. 激光技术. 37(5), 679-681(2013).

【13】Zhao S L, Zhu B Q, Zhan T Y et al. Research on pulse shape properties of high-power Nd∶glass laser frequency tripling. Acta Physica Sinica. 55(8), 4170-4175(2006).
赵书林, 朱宝强, 詹庭宇 等. 高功率钕玻璃激光三倍频脉冲时间波形的研究. 物理学报. 55(8), 4170-4175(2006).

【14】Wang P, Wang Z H, Wei Z Y et al. Measurement of spectral phase of femotosecond laser pulse using SPIDER technique. Acta Physica Sinica. 53(9), 3004-3009(2004).
王鹏, 王兆华, 魏志义 等. 用SPIDER法测量飞秒激光脉冲的光谱相位. 物理学报. 53(9), 3004-3009(2004).

【15】Hong W Y. “Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium. Acta Physica Sinica. 64(2), (2015).
洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报. 64(2), (2015).

【16】O''Shea P. Kimmel M, Gu X, et al. Highly simplified device for ultrashort-pulse measurement. Optics Letters. 26(12), 932-934(2001).

【17】Akturk S and Kimmel M. O''Shea P, et al. Extremely simple device for measuring 20-fs pulses. Optics Letters. 29(9), 1025-1027(2004).

【18】O''Shea P. Kimmel M, Gu X, et al. Highly simplified device for ultrashort-pulse measurement. Optics Letters. 26(12), 932-934(2001).

【19】DeLong K W, Fittinghoff D N and Trebino R. Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating. IEEE Journal of Quantum Electronics. 32(7), 1253-1264(1996).

引用该论文

Cheng Guangzhen,Zhang Liuyang,Pu Shaozhi,Qu Yuqiu,Li Qianru,Yu Ze. Optical Design of Total-Reflective Ultra-Short-Pulse Measurement System[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152201

程广真,张留洋,浦绍质,曲玉秋,李倩茹,于泽. 全反式超短脉冲测量系统的光学设计[J]. 激光与光电子学进展, 2019, 56(15): 152201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF