首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1014002--1)

TA15钛合金激光熔化沉积工艺参数对超声检测精度的影响

Effects of Laser Melting Deposition Process Parameters on Ultrasonic Testing Accuracy of TA15 Titanium Alloy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光熔化沉积(LMD)是一种增材制造工艺,金属粉末经激光熔化后逐层叠加并冷却成形[1],制造过程不需要模具,这有利于简化工艺流程,降低成本[2]。使用该工艺制造的各类钛合金增材制品已小批量应用在某些型号飞机上并逐渐向规模化发展[3-4]。但由于增材制造工艺采用的是“逐点化”的制造方式,其组织特征、内部缺陷的类型和分布都与传统锻、铸件有所区别,现有的无损检测方法在增材结构上已不再适用[5]。目前,各无损检测技术在增材结构件上的应用已成为新的热点,超声检测因其检测速度快、适用性广、对人体和环境无害等优势得到了广泛关注[6]。

Abstract

Since the material properties of metal additive components differ from those produced by traditional manufacturing processes, the original ultrasonic nondestructive testing methods are no longer applicable. To study the ultrasonic nondestructive testing characteristics of metal additive components and improve the ultrasonic nondestructive testing accuracy, TA15 alloy specimens are prepared by laser melting deposition with different laser powers and overlap rates. The sensitivity and sound velocity of the longitudinal wave, which are excited by contact ultrasonic testing with a phased array ultrasonic equipment, are compared and analyzed. Results show that ultrasonic sensitivity is considerably affected by laser power. Ultrasonic velocity is affected by the forming direction and process parameters. Forming direction is a more important parameter. The material and process parameters of the reference block should be the same as those of the parts to be tested. In addition, the sound velocity in each detection direction of the parts should be calibrated.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1014002

所属栏目:激光器与激光光学

基金项目:国家重点研发计划、国家自然科学基金;

收稿日期:2019-05-09

修改稿日期:2019-06-27

网络出版日期:2019-10-01

作者单位    点击查看

孙长进:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110016中国科学院大学工程科学学院, 北京 100049
赵吉宾:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110016
赵宇辉:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110016
何振丰:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110016
王志国:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110016
高元:中国科学院沈阳自动化研究所, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110016东北大学机械工程与自动化学院, 辽宁 沈阳 110819

联系人作者:赵宇辉(yhzhao@sia.cn)

备注:国家重点研发计划、国家自然科学基金;

【1】Zhan X H, Lin X, Gao Z N et al. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of invar alloy. Journal of Alloys and Compounds. 755, 123-134(2018).

【2】Pu Y S, Wang B Q and Zhang L G. Metal 3D printing technology. Surface Technology. 47(3), 78-84(2018).
蒲以松, 王宝奇, 张连贵. 金属3D打印技术的研究. 表面技术. 47(3), 78-84(2018).

【3】Gong S L. Application of high power beam processing technology in aeroengine Aeronautical Manufacturing Technology. 2013(9), 34-37(0).
巩水利. 高能束流加工技术在航空发动机领域的应用 航空制造技术. 2013(9), 34-37(0).

【4】Wang Y Q, Shen J X and Wu H Q. Application and research status of alternative materials for 3D-printing technology. Journal of Aeronautical Materials. 36(4), 89-98(2016).
王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状. 航空材料学报. 36(4), 89-98(2016).

【5】Li S J, Murr L E, Cheng X Y et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. Acta Materialia. 60(3), 793-802(2012).

【6】Achenbach J D. Quantitative nondestructive evaluation. International Journal of Solids and Structures. 37(1/2), 13-27(2000).

【7】Schehl N, Kramb V, Dierken J et al. Ultrasonic assessment of additive manufactured Ti-6Al-4V. AIP Conference Proceedings. 1949, (2018).

【8】Tofeldt O, Pierce S G, Smillie G et al. Investigation of fundamental ultrasonic propagation characteristics in NDT of electron beam melted additive manufactured samples. [C]∥12th European Conference on Non-Destructive Testing, June 11-15, 2018, Gothenburg, Sweden. Scotland, Glasgow: University of Strathclyde. (2018).

【9】Sol T, Hayun S, Noiman D et al. Nondestructive ultrasonic evaluation of additively manufactured AlSi10Mg samples. Additive Manufacturing. 22, 700-707(2018).

【10】Gao X Y, Gao X X, Jiang T et al. Defects analysis of large additive manufacturing beam of titanium alloy. Failure Analysis and Prevention. 13(1), 43-48(2018).
高翔宇, 高祥熙, 姜涛 等. 增材制造大型钛合金横梁缺陷分析. 失效分析与预防. 13(1), 43-48(2018).

【11】Men P, Dong S Y, Yan S X et al. Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity. Journal of Beijing University of Aeronautics and Astronautics. 44(11), 2312-2320(2018).
门平, 董世运, 闫世兴 等. 热处理及测量方式对纵波声速评价材料硬度的影响. 北京航空航天大学学报. 44(11), 2312-2320(2018).

【12】Yang P H, Shi L J, Liang J et al. Experimental research on ultrasonic characteristics of TC18 additive manufacturing titanium alloy Aeronautical Manufacturing Technology. 2017(5), 38-42(0).
杨平华, 史丽军, 梁菁 等. TC18钛合金增材制造材料超声检测特征的试验研究 航空制造技术. 2017(5), 38-42(0).

【13】Li X W, Sha A X, Zhang W F et al. TA15 titanium alloy and its applying prospects on airframe. Titanium Industry Progress. 20(4), 90-94(2003).
李兴无, 沙爱学, 张旺峰 等. TA15合金及其在飞机结构中的应用前景. 钛工业进展. 20(4), 90-94(2003).

【14】Li L Q, Wang J D, Wu C C et al. Temperature field of molten pool and microstructure property in laser melting depositions of Ti6Al4V. Chinese Journal of Lasers. 44(3), (2017).
李俐群, 王建东, 吴潮潮 等. Ti6Al4V激光熔化沉积熔池温度场与微观组织特性. 中国激光. 44(3), (2017).

【15】Lai Y B. Research on processing characteristics during laser metal direct desposition additive manufacturing. Shenyang: University of Chinese Academy of Sciences. (2015).
来佑彬. 金属激光直接沉积增材制造工艺研究. 沈阳: 中国科学院大学. (2015).

【16】Halmshaw R. Introduction to the non-destructive testing of welded joints. (1996).

【17】Hislop J D. Flaw size evaluation in immersed ultrasonic testing. Non-Destructive Testing. 2(3), 183-192(1969).

【18】Kleinert W. Defect sizing using non-destructive ultrasonic testing. Cham: Springer. (2016).

【19】Zheng H and Lin S Q. Ultrasonic testing. 20-25(2008).
郑晖, 林树青. 超声检测. 20-25(2008).

【20】Kirka M M, Greeley D A, Hawkins C et al. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting. International Journal of Fatigue. 105, 235-243(2017).

【21】Tilita G A and Chen W. Kwan C C F, et al. The effect of ultrasonic excitation on the microstructure of selective laser melted 304L stainless steel. Materialwissenschaft Und Werkstofftechnik. 48(5), 342-348(2017).

【22】He B B. Characterizing of polymer morphologies & in situ monitoring of injection molding process using ultrasonic techniques. Chengdu: Sichuan University. (2006).
何波兵. 超声技术在聚合物形态结构表征及注射成形过程在线检测中应用的基础研究. 成都: 四川大学. (2006).

【23】Felice M V and Fan Z. Sizing of flaws using ultrasonic bulk wave testing: a review. Ultrasonics. 88, 26-42(2018).

【24】Wang K, Bao R, Liu D et al. Plastic anisotropy of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy. Materials Science and Engineering: A. 746, 276-289(2019).

【25】Kruth J P. Vandenbroucke B, van Vaerenbergh J, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. [C]∥Les 11ièmes Assises Européennes du Prototypage Rapide, October 4-5, 2005, Paris, France. [S.l.: s.n.]. (2005).

【26】Wang L, Pratt P, Felicelli S D et al. Pore formation in laser-assisted powder deposition process. Journal of Manufacturing Science and Engineering. 131(5), (2009).

【27】Susan D F, Puskar J D, Brooks J A et al. Quantitative characterization of porosity in stainless steel LENS powders and deposits. Materials Characterization. 57(1), 36-43(2006).

【28】Ahsan M N, Bradley R and Pinkerton A J. Microcomputed tomography analysis of intralayer porosity generation in laser direct metal deposition and its causes. Journal of Laser Applications. 23(2), (2011).

【29】Qiu C L, Panwisawas C, Ward M et al. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia. 96, 72-79(2015).

引用该论文

Changjin Sun,Jibin Zhao,Yuhui Zhao,Zhenfeng He,Zhiguo Wang,Yuan Gao. Effects of Laser Melting Deposition Process Parameters on Ultrasonic Testing Accuracy of TA15 Titanium Alloy[J]. Acta Optica Sinica, 2019, 39(10): 1014002

孙长进,赵吉宾,赵宇辉,何振丰,王志国,高元. TA15钛合金激光熔化沉积工艺参数对超声检测精度的影响[J]. 光学学报, 2019, 39(10): 1014002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF