首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1812001--1)

基于光路自动准直的甲烷遥测技术

Methane Telemetry Based on Optical Path Automatic Collimation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对目前甲烷遥测装置因光学准直固定,在不同检测环境使用时不能进行动态调整的问题,在光路准直设计中引入了电控可变焦透镜,实现了光路自动准直。测试结果表明,针对不同的检测距离和辅助目标,通过改变电控可变焦透镜的驱动电流可实现快速变焦,在动态调节激光光束发散效果的同时可使遥测装置的接收光功率最大化,其接收光功率相比无变焦透镜接收光功率可提高1.7倍以上,同时可提高检测系统的信噪比。针对变焦透镜在遥测应用中出现的新问题,如重力效应引起的光束偏转效应,提出了形变模型,并进行了理论计算和仿真分析。使用甲烷气袋进行泄漏模拟测试,通过Allan方差分析得到:当积分时间为18 s时,极限标准差达到1.51×10 -6。对装置进行实地测量,测试距离为52.2 m,检测到楼道空气中存在4.95×10 -6浓度(体积分数)的甲烷气体。该研究展示了使用电控可变焦透镜实现光路自动准直和优化在气体泄漏遥测装置中的可行性与应用价值。

Abstract

To solve the problem that a methane telemetry device can not be dynamically adjusted when it is used in different detection environments due to its fixed optical collimation, an electronically controlled zoom lens is introduced into the optical path collimation design to achieve automatic optical path collimation. Test results show that for different detection distances and auxiliary targets, the fast zoom can be achieved by changing the driving current of the electronically controlled zoom lens. The receiving optical power of the telemetry device can be maximized while dynamically adjusting the laser beam divergence effect. Compared with the non-zoom lens, the receiving optical power can be increased by more than 1.7 times, and the signal-to-noise ratio of the detection system is improved. In view of the new problems of the zoom lens in telemetry applications, such as beam deflection caused by the gravity effect, a deformation model is proposed, and theoretical calculation and simulation analysis are carried out. A methane gas bag is used to conduct a leak simulation test. Through the Allan variance analysis, we obtain that when the integration time is 18 s, the limit standard deviation is 1.51×10 -6. The field measurement for the device is conducted, the test distance is 52.2 m, and the methane gas with the concentration (volume fraction) of 4.95×10 -6 is detected in the corridor air. The research demonstrates the feasibility and the application value of using an electronically controlled variable focus lens to realize automatic collimation and optimization of the optical path in a gas leakage telemetry device.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN21

DOI:10.3788/AOS202040.1812001

所属栏目:仪器,测量与计量

基金项目:山东省重点研发计划;

收稿日期:2020-05-07

修改稿日期:2020-06-09

网络出版日期:2020-09-01

作者单位    点击查看

季文海:中国石油大学(华东)控制科学与工程学院, 山东 青岛 266580
宋迪:中国石油大学(华东)控制科学与工程学院, 山东 青岛 266580
焦月:中国石油大学(华东)控制科学与工程学院, 山东 青岛 266580
马龙岩:中国石油大学(华东)控制科学与工程学院, 山东 青岛 266580
李国林:中国石油大学(华东)控制科学与工程学院, 山东 青岛 266580

联系人作者:李国林(liguolin@upc.edu.cn)

备注:山东省重点研发计划;

【1】Pan M Z, Qi H X, Li Z W, et al. Airborne inspection of natural gas pipeline [J]. Journal of Infrared and Millimeter Waves. 2010, 29(6): 410-414.
潘明忠, 亓洪兴, 李正文, 等. 一种适于直升机平台的天然气管道泄漏监测技术 [J]. 红外与毫米波学报. 2010, 29(6): 410-414.

【2】Li J, Lu X T, Yang Z H. Remote system of natural gas leakage based on multi-wavelength characteristics spectrum analysis [J]. Spectroscopy and Spectral Analysis. 2014, 34(5): 1249-1252.
李静, 鲁旭涛, 杨泽辉. 基于多特征波长光谱分析的天然气泄漏遥测系统 [J]. 光谱学与光谱分析. 2014, 34(5): 1249-1252.

【3】Vengosh A, Jackson R B, Warner N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States [J]. Environmental Science & Technology. 2014, 48(15): 8334-8348.

【4】Al-Saidi I A. Using a simple method: conversion of a Gaussian laser beam into a uniform beam [J]. Optics & Laser Technology. 2001, 33(2): 75-79.

【5】Cui F X, Li D C, Wu J, et al. Adaptive feature extraction algorithm based on Lasso method for detecting polluted gas [J]. Acta Optica Sinica. 2019, 39(5): 0530003.
崔方晓, 李大成, 吴军, 等. 基于Lasso方法的污染气体自适应探测算法 [J]. 光学学报. 2019, 39(5): 0530003.

【6】Zhang S, Liu W Q, Zhang Y J, et al. A mobile sensor for remote detection of natural gas leakage [J]. Spectroscopy and Spectral Analysis. 2012, 32(2): 570-574.
张帅, 刘文清, 张玉钧, 等. 一种移动式遥测天然气泄漏检测仪 [J]. 光谱学与光谱分析. 2012, 32(2): 570-574.

【7】Li Z W, Qi H X, Xiao G H, et al. Airborne infrared laser radar inspection technique for natural gas pipeline leakage [J]. Infrared and Laser Engineering. 2011, 40(12): 2398-2402.
李正文, 亓洪兴, 肖功海, 等. 机载红外激光雷达监测天然气管道泄漏技术 [J]. 红外与激光工程. 2011, 40(12): 2398-2402.

【8】Pang T, Wang Y, Xia H, et al. Full scale methane sensor based on TDLAS technology [J]. Acta Photonica Sinica. 2016, 45(9): 0912003.
庞涛, 王煜, 夏滑, 等. 基于TDLAS技术的全量程激光甲烷传感器 [J]. 光子学报. 2016, 45(9): 0912003.

【9】Ding W W, Sun L Q, Yi L Y. High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy [J]. Acta Physica Sinica. 2017, 66(10): 100702.
丁武文, 孙利群, 衣路英. 基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术 [J]. 物理学报. 2017, 66(10): 100702.

【10】Zhang Z, Zhang L Y. TDLAS-based methane telemetry technology [J]. Journal of Changchun University. 2011, 21(3): 9-12.
张卓, 张丽英. 基于TDLAS的甲烷遥测技术 [J]. 长春大学学报(自然科学版). 2011, 21(3): 9-12.

【11】Gong W H. Research on key technologies of gas remote sensing based on open path tunable diode laser absorption spectroscopy [D]. Jinan: Shandong University. 2019.
宫卫华. 基于开放光路可调谐半导体激光吸收光谱技术气体遥测关键技术研究 [D]. 济南: 山东大学. 2019.

【12】Jiang Z S, Wang F, Xu T, et al. CH4 gas remote sensing by a transceiver system based on TDLAS technology Energy Engineering[J]. 0, 2012(3): 1-5.
姜治深, 王飞, 许婷, 等. 基于可调谐半导体激光吸收光谱技术的甲烷遥测方法的研究 能源工程[J]. 0, 2012(3): 1-5.

【13】Zhang Y, Zhang X, Shi G W, et al. Applications of liquid lenses in zoom systems [J]. Chinese Optics. 2013, 6(1): 46-56.
张鹰, 张新, 史广维, 等. 液体透镜在变焦系统中的应用 [J]. 中国光学. 2013, 6(1): 46-56.

【14】Chu X, Zhu L Q, Meng X C, et al. Quick focusing method in bionic vision based on the liquid lens [J]. Laser & Infrared. 2017, 47(2): 203-209.
褚翔, 祝连庆, 孟晓辰, 等. 一种基于液体透镜的仿生视觉快速调焦方法 [J]. 激光与红外. 2017, 47(2): 203-209.

【15】Lu W, Fu D Y, Sun Y P, et al. Initial approach about application of liquid lens in space exploration [J]. Spacecraft Recovery & Remote Sensing. 2007, 28(1): 25-29.
卢威, 傅丹鹰, 孙燕萍, 等. 液体镜头技术应用于空间探测的初步探讨 [J]. 航天返回与遥感. 2007, 28(1): 25-29.

【16】Ji W H, Song D. -09-15 [P]. Li G L. Automatic collimation optical remote measurement system: CN107167812A. 2017.
季文海, 宋迪, 李国林. -09-15 [P]. . 一种自动准直的光学遥测系统: CN107167812A. 2017.

【17】Dong L, Tittel F K, Li C G, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing [J]. Optics Express. 2016, 24(6): A528-A535.

【18】Li G L, Dong E T, Ji W H. A near-infrared trace CO2 detection system based on an 1, 580 nm tunable diode laser using a cascaded integrator comb (CIC) filter-assisted wavelength modulation technique and a digital lock-in amplifier [J]. Frontiers in Physics. 2019, 7: 199.

【19】Li J S, Deng H, Li P F, et al. Real-time infrared gas detection based on an adaptive Savitzky-Golay algorithm [J]. Applied Physics B. 2015, 120(2): 207-216.

【20】He J F, Liu W Q, Zhang Y J, et al. A denoising method for backscatter signal of laser ceilometer based on Hilbert-Huang transform [J]. Acta Optica Sinica. 2011, 31(2): 0201001.
何俊峰, 刘文清, 张玉钧, 等. 基于希尔伯特-黄变换的激光云高仪后向散射信号去噪方法 [J]. 光学学报. 2011, 31(2): 0201001.

【21】Ji W H, Lü X C, Hu W Z, et al. Application of TDLAS technology to multicomponent detection in olefin production process [J]. Optics and Precision Engineering. 2018, 26(8): 1837-1845.
季文海, 吕晓翠, 胡文泽, 等. TDLAS技术在烯烃生产过程中的多组分检测应用 [J]. 光学精密工程. 2018, 26(8): 1837-1845.

【22】Chen S. Study on the variable focus liquid lens using PDMS membrane [D]. Hangzhou: Zhejiang University. 2018.
陈帅. PDMS薄膜型可变焦液体透镜研究 [D]. 杭州: 浙江大学. 2018.

引用该论文

Ji Wenhai,Song Di,Jiao Yue,Ma Longyan,Li Guolin. Methane Telemetry Based on Optical Path Automatic Collimation[J]. Acta Optica Sinica, 2020, 40(18): 1812001

季文海,宋迪,焦月,马龙岩,李国林. 基于光路自动准直的甲烷遥测技术[J]. 光学学报, 2020, 40(18): 1812001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF