首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1102001--1)

FV520B钢激光打底焊结合CMT填充焊焊接接头的组织和性能

Microstructures and Properties of FV520B Steel Joint by Laser Backing Welding with CMT Filler Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用激光焊打底和冷金属过渡(CMT)焊填充的工艺对FV520B钢进行焊接,研究了不同工艺参数下接头的组织和性能。激光打底焊后,焊缝熔化区的组织主要包括原奥氏体晶粒内平行排布的板条马氏体以及分布于原奥氏体晶界和马氏体板条界的δ铁素体;激光焊熔合线位置存在呈连续和离散状分布的δ铁素体。随着CMT填充焊热输入的增加,熔宽、熔深及热影响区的宽度均增加,激光打底焊热影响区和熔化区的组织特征逐渐消失;当CMT填充焊的热输入较低时,在紧靠填充焊熔合线的受热影响的激光焊熔化区(HALWFZ)内,晶粒在高温热影响下变为等轴状,并且随着到熔合线距离的增加而变小;当热输入量较高时,激光焊熔化区的柱状晶组织均转变为等轴晶且晶粒较大。与激光焊相比,填充焊后焊缝横截面在水平方向各区域的硬度分布更加均匀;随着填充焊热输入增加,HALWFZ的平均硬度先增大后减小。填充焊熔化区(FWFZ)的平均硬度低于激光焊熔化区(LWFZ);LWFZ在靠近熔合线处的硬度最低。填充焊后激光焊区域的强度大于母材,填充焊区域的强度小于母材。随着填充焊热输入增加,激光焊区域的冲击韧性增加。电化学腐蚀试验表明,随着热输入增加,LWFZ的腐蚀电位先升高后降低;填充焊前和填充焊后LWFZ的耐蚀性均高于母材。

Abstract

Herein, an FV520B steel joint is formed through laser backing welding and cold metal transfer (CMT) filler welding. Microstructures and properties of the joints at different processing parameters are studied. Microstructures of the fusion zone (FZ) obtained using laser backing welding mainly comprise lath martensites, which are arranged in a parallel form in the primary austenite grains, and δ ferrites, which are situated at the primary austenite grain boundaries and lath martensite interfaces. Some continuous and discrete δ ferrites are located at the fusion line of laser welding. The weld width, weld penetration, and the width of heat-affected zone (HAZ) increase with the increase of the heat input of the CMT filler welding. Moreover, the microstructural characteristics of the HAZ and FZ of laser backing welding gradually disappear. When the heat input of CMT filler welding is lower, the grains in the heat-affected laser welding fusion zone (HALWFZ) close to the filler welding fusion line exhibit an equiaxed shape because of the high temperature reheating. Furthermore, the size of the equiaxed grains decreases with the increase of distance to the filler welding fusion line. When the heat input of CMT filler welding is higher, the columnar grain microstructures in the laser welding fusion zone transfer into the larger equiaxed grains. Compared with the single laser welding, the hardness of the weld cross-section exhibits more uniform distribution in the horizontal direction after the filler welding. With the increase of heat input of filler welding, the average hardness of HALWFZ initially increases and then decreases. The average hardness of the filler welding fusion zone (FWFZ) is lower than that of the laser welding fusion zone (LWFZ). Moreover, the average hardness of the LWFZ presents the lowest value in the vicinity of the filler welding fusion line. After filler welding, the strength of laser backing welding area is higher than that of the base metal, whereas the strength of filler welding area is lower than that of the base metal. The impact toughness of laser backing welding area increases with the heat input of filler welding. Electrochemical corrosion results show that with the increase in the heat input, the corrosion potential of LWFZ initially increases and then decreases. The LWFZs before and after filler welding both exhibit a superior corrosion resistance than the base-metal substrate.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG456

DOI:10.3788/CJL202047.1102001

所属栏目:激光制造

基金项目:辽宁重大装备制造协同创新中心基金、高端控制阀产业技术协同创新中心基金;

收稿日期:2020-03-22

修改稿日期:2020-06-15

网络出版日期:2020-11-01

作者单位    点击查看

邓德伟:大连理工大学材料科学与工程学院, 辽宁 大连 116024沈阳鼓风机集团股份有限公司, 辽宁 沈阳 110869
吕捷:大连理工大学材料科学与工程学院, 辽宁 大连 116024
马玉山:吴忠仪表有限责任公司, 宁夏 吴忠 751100
张勇:沈阳鼓风机集团股份有限公司, 辽宁 沈阳 110869
黄治冶:沈阳鼓风机集团股份有限公司, 辽宁 沈阳 110869

联系人作者:邓德伟(deng@dlut.edu.cn)

备注:辽宁重大装备制造协同创新中心基金、高端控制阀产业技术协同创新中心基金;

【1】Xu B S, Fang J X, Dong S Y, et al. Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel [J]. Acta Metallurgica Sinica. 2016, 52(1): 1-9.
徐滨士, 方金祥, 董世运, 等. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响 [J]. 金属学报. 2016, 52(1): 1-9.
Xu B S, Fang J X, Dong S Y, et al. Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel [J]. Acta Metallurgica Sinica. 2016, 52(1): 1-9.
徐滨士, 方金祥, 董世运, 等. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响 [J]. 金属学报. 2016, 52(1): 1-9.

【2】Fang J X. Evolution and control of stress during laser cladding forming of martensitic stainless steel [D]. Harbin: Harbin Institute of Technology. 2016, 1-8.
方金祥. 激光熔覆成形马氏体不锈钢应力演化及调控机制 [D]. 哈尔滨: 哈尔滨工业大学. 2016.

【3】Fan J L, Guo X L, Wu C W, et al. Fatigue performance of cruciform welded joints of FV520B steel [J]. Transactions of Materials and Heat Treatment. 2012, 33(7): 76-81.
樊俊铃, 郭杏林, 吴承伟, 等. FV520B钢十字焊接接头的疲劳性能 [J]. 材料热处理学报. 2012, 33(7): 76-81.
Fan J L, Guo X L, Wu C W, et al. Fatigue performance of cruciform welded joints of FV520B steel [J]. Transactions of Materials and Heat Treatment. 2012, 33(7): 76-81.
樊俊铃, 郭杏林, 吴承伟, 等. FV520B钢十字焊接接头的疲劳性能 [J]. 材料热处理学报. 2012, 33(7): 76-81.

【4】Niu J, Dong J M, Xue J, et al. Analysis of mechanical properties of FV520(B) stainless steel and 18CrMnMoV steel welded joints [J]. Transactions of the China Welding Institution. 2006, 27(12): 101-104.
牛靖, 董俊明, 薛锦, 等. FV520(B)与18CrMnMoV焊接接头力学性能分析 [J]. 焊接学报. 2006, 27(12): 101-104.
Niu J, Dong J M, Xue J, et al. Analysis of mechanical properties of FV520(B) stainless steel and 18CrMnMoV steel welded joints [J]. Transactions of the China Welding Institution. 2006, 27(12): 101-104.
牛靖, 董俊明, 薛锦, 等. FV520(B)与18CrMnMoV焊接接头力学性能分析 [J]. 焊接学报. 2006, 27(12): 101-104.

【5】Pan J Y, Xiang L H, Chen S Y, et al. Experimental study on electrochemical corrosion of FV520B in natural gas environment [J]. Results in Physics. 2017, 7: 4405-4411.Pan J Y, Xiang L H, Chen S Y, et al. Experimental study on electrochemical corrosion of FV520B in natural gas environment [J]. Results in Physics. 2017, 7: 4405-4411.

【6】Sun J, Chen S Y, Qu Y P, et al. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller [J]. Chinese Journal of Mechanical Engineering. 2015, 28(2): 217-225.

【7】Wu Q, Chen X D, Fan Z C, et al. Corrosion fatigue behavior of FV520B steel in water and salt-spray environments [J]. Engineering Failure Analysis. 2017, 79: 422-430.

【8】Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects [J]. Physics Procedia. 2010, 5: 9-17.

【9】Zou Z D. Welding handbook[M]. Beijing: China Machine Press, 2008, 514-516.
邹增大. 焊接手册[M]. 3版. 北京: 机械工业出版社, 2008, 514-516.

【10】Hao K D, Gong M C, Pi Y M, et al. Effect of Ni content on rolling toughness of laser-arc hybrid welded martensitic stainless steel [J]. Journal of Materials Processing Technology. 2018, 251: 127-137.

【11】Nekouie Esfahani M R, Coupland J, Marimuthu S. Microstructural and mechanical characterisation of laser-welded high-carbon and stainless steel [J]. The International Journal of Advanced Manufacturing Technology. 2015, 80(5/6/7/8): 1449-1456.

【12】Khan M M A, Romoli L, Fiaschi M, et al. Experimental investigation on laser beam welding of martensitic stainless steels in a constrained overlap joint configuration [J]. Journal of Materials Processing Technology. 2010, 210(10): 1340-1353.

【13】Zhou H M, Li Z L, Mu N, et al. Effect of line energy on microstructure and properties of high strength steel joints by laser filler wire welding [J]. Laser & Optoelectronics Progress. 2019, 56(3): 031401.
周海铭, 李柘林, 牟楠, 等. 线能量对高强钢激光填丝接头组织及性能影响 [J]. 激光与光电子学进展. 2019, 56(3): 031401.

【14】Cao Y, Zhao L, Peng Y, et al. Effect of heat input on microstructure and mechanical properties of laser welded medium Mn steel joints [J]. Chinese Journal of Lasers. 2018, 45(11): 1102008.
曹洋, 赵琳, 彭云, 等. 热输入对激光焊中锰钢接头组织和力学性能的影响 [J]. 中国激光. 2018, 45(11): 1102008.

【15】Bahrami Balajaddeh M, Naffakh-Moosavy H. Pulsed Nd∶YAG laser welding of 17-4 PH stainless steel: microstructure, mechanical properties, and weldability investigation [J]. Optics & Laser Technology. 2019, 119: 105651.

【16】Gu S Y, Liu Z J, Zhang P L, et al. Appearances and formation mechanism of welds in high-strength steels by high speed laser-arc hybrid welding [J]. Chinese Journal of Lasers. 2018, 45(12): 1202007.
顾思远, 刘政君, 张培磊, 等. 高速激光电弧复合焊接高强钢焊缝的形貌及成形机理 [J]. 中国激光. 2018, 45(12): 1202007.

【17】Lu H. CMT welding technology of thick aluminum alloy plates for high speed train [J]. Transactions of the China Welding Institution. 2015, 36(4): 75-78.
路浩. 高速列车用厚板铝合金CMT焊接工艺 [J]. 焊接学报. 2015, 36(4): 75-78.

【18】Meng Q L. Study on the welding process of stainless steel sheet by cold metal transfer (CMT) [D]. Changchun: Jilin University. 2015, 1-12.
孟庆亮. 不锈钢薄板冷金属过渡焊焊接(CMT)工艺研究 [D]. 长春: 吉林大学. 2015, 1-12.

【19】Kou S. Welding metallurgy [M]. Hoboken, USA: John Wiley & Sons, Inc. 2002.

【20】Lippold J C, Kotecki D J. Welding metallurgy and weldability of stainless steels [M]. Hoboken, USA: John Wiley & Sons, Inc. 2005, 203-216.

【21】Zhang X, Mi G Y, Xiong L D, et al. Effects of interlaminar microstructural inhomogeneity on mechanical properties and corrosion resistance of multi-layer fiber laser welded high strength low alloy steel [J]. Journal of Materials Processing Technology. 2018, 252: 81-89.

【22】Wang Z M, Li H, Shen Q, et al. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel [J]. Acta Materialia. 2018, 156: 158-171.

引用该论文

Deng Dewei,Lü Jie,Ma Yushan,Zhang Yong,Huang Zhiye. Microstructures and Properties of FV520B Steel Joint by Laser Backing Welding with CMT Filler Welding[J]. Chinese Journal of Lasers, 2020, 47(11): 1102001

邓德伟,吕捷,马玉山,张勇,黄治冶. FV520B钢激光打底焊结合CMT填充焊焊接接头的组织和性能[J]. 中国激光, 2020, 47(11): 1102001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF