首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:231501--1)

封酒环在线缺陷检测方法

Online Detection of Wine Seal Ring Defects

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为减少因封酒环缺陷导致酒质量变差的问题,提高缺陷检测效率,需对封酒环在线缺陷检测方法展开研究与开发。根据封酒环结构、位置与瓶盖内径、深度等特点,研发一种基于机器视觉双视场双工位协同在线检测系统。针对封酒环轮廓缺陷在二维信息中难以提取的问题,提出将封酒环轮廓二维信息转换成一维向量,在此基础上应用一维向量理论对其缺陷进行分析与处理,并采用小波模极大值法进行缺陷提取与判定。实验结果表明该系统可有效检测封酒环轮廓任意位置缺陷,检测精度达到99.89%。与手工检测相比,轮廓信息经维度转换后,检测效率提高6倍以上,满足现场实际生产和预期研发要求,为封酒环无损在线检测提供新的途径。

Abstract

To address the problem of poor wine quality caused by wine seal ring defects and improve defect detection efficiency, an online detection method for wine seal ring defects is developed. According to the structure and position of the wine seal rings and the inner diameter and depth of the bottle caps, an online detection system based on machine vision dual-field and dual-station collaboration methods is proposed. Given that it is difficult to extract the contour defects of wine seal rings from two-dimensional information, we transform the two-dimensional information of a wine seal ring contour into an one-dimensional vector. Then, the one-dimensional vector theory is applied to analyze and deal with the defects, and the wavelet modulus maxima method is used to extract and determine them. The experimental results show that the system can effectively detect defects at any position of a wine ring and that its detection accuracy is 99.89%. The efficiency of the method described in this paper is six times higher than that of manual inspection. It meets the requirements of production and expected R&D, and provides a new technique for the non-destructive online detection of wine seal ring defects.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.231501

所属栏目:机器视觉

基金项目:四川省科技厅重点研发项目、四川省部级重点实验室项目;

收稿日期:2019-03-21

修改稿日期:2019-05-27

网络出版日期:2019-12-01

作者单位    点击查看

董娜:四川轻化工大学机械工程学院, 四川 宜宾 644000
黄丹平:四川轻化工大学机械工程学院, 四川 宜宾 644000
田建平:四川轻化工大学机械工程学院, 四川 宜宾 644000
黄丹:四川轻化工大学机械工程学院, 四川 宜宾 644000
罗慧波:四川轻化工大学机械工程学院, 四川 宜宾 644000

联系人作者:黄丹平(hdpyx2002@163.com)

备注:四川省科技厅重点研发项目、四川省部级重点实验室项目;

【1】Fu Z T, Xing S H, Zhang X S. Development trend of food quality safety traceability technology [J]. Transactions of the Chinese Society for Agricultural Machinery. 2013, 44(7): 144-153.
傅泽田, 邢少华, 张小栓. 食品质量安全可追溯关键技术发展研究 [J]. 农业机械学报. 2013, 44(7): 144-153.

【2】He B X, Zhang Y, Tong K J, et al. Curved surface imaging theory and defect detection for sealing rings used in aerospace systems [J]. Optics and Precision Engineering. 2015, 23(11): 3051-3060.
何博侠, 张毅, 童楷杰, 等. 航天密封圈的曲面成像理论及其缺陷检测 [J]. 光学精密工程. 2015, 23(11): 3051-3060.

【3】Xu B X. Development of bottle cap defect detection system based on machine vision [D]. Chengdu: University of Electronic Science and Technology of China. 2015.
徐宝霞. 基于机器视觉瓶盖缺陷检测系统开发 [D]. 成都: 电子科技大学. 2015.

【4】Chen G F, Guan G Y, Wei X. Online stamping parts surface defects detection based on machine vision [J]. Laser & Optoelectronics Progress. 2018, 55(1): 011501.
陈广锋, 管观洋, 魏鑫. 基于机器视觉的冲压件表面缺陷在线检测研究 [J]. 激光与光电子学进展. 2018, 55(1): 011501.

【5】Li D, Bai G J, Jin Y Y, et al. Machine-vision based defect detection algorithm for packaging bags [J]. Laser & Optoelectronics Progress. 2019, 56(9): 091501.
李丹, 白国君, 金媛媛, 等. 基于机器视觉的包装袋缺陷检测算法研究与应用 [J]. 激光与光电子学进展. 2019, 56(9): 091501.

【6】Qi X T. Research on rubber ring dimensions and defects image detection system [D]. Hangzhou: China Jiliang University. 2016.
亓信同. 橡胶密封圈尺寸及缺陷的机器视觉检测系统研究 [D]. 杭州: 中国计量大学. 2016.

【7】Huang Z H, Mao J X, Wang Y N, et al. Research on beer bottle defect classification detection method based on machine vision [J]. Journal of Electronic Measurement and Instrumentation. 2016, 30(6): 873-879.
黄志鸿, 毛建旭, 王耀南, 等. 基于机器视觉的啤酒瓶口缺陷检测分类方法研究 [J]. 电子测量与仪器学报. 2016, 30(6): 873-879.

【8】Liu D, Zhang B, Li H X, et al. Detection of micro-cylinder end face defect in complex background [J]. Laser & Optoelectronics Progress. 2018, 55(6): 061006.
刘丹, 张斌, 李慧娴, 等. 复杂背景下微小圆柱端面缺陷检测方法研究 [J]. 激光与光电子学进展. 2018, 55(6): 061006.

【9】Qian X L, Zhang H Q, Zhang H L, et al. Solar cell surface defect detection based on visual saliency [J]. Chinese Journal of Scientific Instrument. 2017, 38(7): 1570-1578.
钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测 [J]. 仪器仪表学报. 2017, 38(7): 1570-1578.

【10】Guo K, Huang D P, Wang L, et al. Research on the curved surface character detection system based on machine vision Modern Manufacturing Engineering[J]. 0, 2016(12): 122-127.
郭康, 黄丹平, 王磊, 等. 基于机器视觉的曲面字符缺陷检测系统研究 现代制造工程[J]. 0, 2016(12): 122-127.

【11】Xiang R, He W H, Zhang X N, et al. Size measurement based on a two-camera machine vision system for the bayonets of automobile brake pads [J]. Measurement. 2018, 122: 106-116.

【12】He B X, Li C L, Li J P, et al. Integration of intelligent measurement and detection for sealing rings used in aerospace systems [J]. Optics and Precision Engineering. 2015, 23(12): 3395-3404.
何博侠, 李春雷, 李江平, 等. 航天密封圈智能测量与检测系统的集成 [J]. 光学精密工程. 2015, 23(12): 3395-3404.

【13】Kong D Z, Shen X J, Lin C, et al. Multi-image encryption based on wavelet transform and fractional Fourier transform [J]. Laser & Optoelectronics Progress. 2013, 50(9): 091002.
孔德照, 沈学举, 林超, 等. 基于小波变换的分数阶傅里叶变换多图加密技术研究 [J]. 激光与光电子学进展. 2013, 50(9): 091002.

【14】Zhang W, Xu H, Duan L F, et al. Identification of metal components characteristic peak position of energy dispersive X-ray fluorescence spectra based on the wavelet transformation [J]. Spectroscopy and Spectral Analysis. 2018, 38(6): 1904-1909.
章炜, 徐华, 段连飞, 等. 小波变换的EDXRF光谱金属组分特征峰位置识别 [J]. 光谱学与光谱分析. 2018, 38(6): 1904-1909.

【15】Wang Z Y, Qian J Q, Li Y Z, et al. Time-frequency analysis of the tip motion in liquids using the wavelet transform in dynamic atomic force microscopy [J]. Nanotechnology. 2018, 29(38): 385702.

【16】Lin L J, Yin Y, He M G, et al. Edge detection algorithm of magnetic tile crack based on wavelet modulus maxima [J]. Journal of University of Electronic Science and Technology of China. 2015, 44(2): 283-288.
林丽君, 殷鹰, 何明格, 等. 基于小波模极大值的磁瓦裂纹缺陷边缘检测算法 [J]. 电子科技大学学报. 2015, 44(2): 283-288.

引用该论文

Dong Na,Huang Danping,Tian Jianping,Huang Dan,Luo Huibo. Online Detection of Wine Seal Ring Defects[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231501

董娜,黄丹平,田建平,黄丹,罗慧波. 封酒环在线缺陷检测方法[J]. 激光与光电子学进展, 2019, 56(23): 231501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF