首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170610--1)

金属纳米晶复合光纤的制造和应用

Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

金属纳米晶复合光纤结合了金属纳米晶独特的局域表面等离子体共振(LSPR)和光纤器件尺寸小、结构简单、性能稳定、抗干扰能力强等优点。其中,金属纳米晶LSPR引起的高非线性效应、金属增强发光、表面增强拉曼散射等效应能够赋予光纤新功能、高性能,而光纤表面倏逝波传输的特性可以极大地提升金属纳米晶的LSPR激发效率。因此,金属纳米晶复合光纤在非线性光学调制、光纤激光器、物理和生化传感与检测方面都有重要的应用,受到了研究者的广泛关注。从金属纳米晶LSPR机理、制造方法、应用等方面对金属纳米晶复合光纤进行介绍,并就其未来发展作展望。

Abstract

Metal nanocrystals hybridized optical fibers (MNCs-OFs) combine the unique localized surface plasmon resonance (LSPR) property afforded by metal nanocrystals and the advantages of small size, simple structure, stable performance, and high resilience to disturbance of optical fibers. On the one hand, high optical nonlinearity, metal enhanced fluorescence,and surface enhanced Raman scattering, which are caused by LSPR of metal nanocrystals, can impart optical fiber with new functionalities and better performance. On the other hand, evanescent wave transmitting property of optical fiber can tremendously enhance the excitation efficiency of LSPR of metal nanocrystals. Therefore, MNCs-OFs are very useful in many applications such as optical tuning, fiber laser, physical/biochemical sensing and detection, which have drawn extensive research interests. Here, we make a brief review to the LSPR mechanism of metal nanocrystals and the fabrication and applications of MNCs-OFs,and provide a prospect to the future development of this type of optical fibers.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170610

所属栏目:功能光纤

基金项目:国家自然科学基金、广东省自然科学基金;

收稿日期:2019-04-18

修改稿日期:2019-05-28

网络出版日期:2019-09-01

作者单位    点击查看

马志军:华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640
江博凡:华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640
许琦:华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640
邱建荣:华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027

联系人作者:马志军, 邱建荣(zhijma@scut.edu.cn, qjr@zju.edu.cn)

备注:国家自然科学基金、广东省自然科学基金;

【1】Kao K C and Hockham G A. Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers. 113(7), 1151-1158(1966).

【2】Rowe H L, Shephard J D, Furniss D et al. The application of the mid-infrared spectral region in medical surgery: chalcogenide glass optical fibre for 10.6 μm laser transmission. Proceedings of SPIE. 6852, (2008).

【3】Caspary R, Schutz S, Mohl S et al. Polymer optical fiber amplifiers. [C]∥14th International Confrence on Transparent Optical Networks(ICTON), July 2-5, 2012, Coventry, UK. New York: IEEE. 12908201, (2012).

【4】Knight J C and Birks T A. Russell P St J, et al. All-silica single-mode optical fiber with photonic crystal cladding: errata. Optics Letters. 22(7), 484-485(1997).

【5】Andrew P and Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science. 306(5698), 1002-1005(2004).

【6】Hutter E and Fendler J H. Exploitation of localized surface plasmon resonance. Advanced Materials. 16(19), 1685-1706(2004).

【7】Moskovits M. Surface-enhanced spectroscopy. Reviews of Modern Physics. 57(3), 783-826(1985).

【8】Daniel M C and Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 104(1), 293-346(2004).

【9】Lal S, Link S and Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics. 1(11), 641-648(2007).

【10】Polwart E, Keir R L, Davidson C M et al. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Applied Spectroscopy. 54(4), 522-527(2000).

【11】Andrade G F S, Fan M K and Brolo A G. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosensors and Bioelectronics. 25(10), 2270-2275(2010).

【12】Cennamo N. D''''Agostino G, Donà A, et al. Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors. 13(11), 14676-14686(2013).

【13】Chen H, Tian F, Chi J M et al. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing. Optics Letters. 39(20), 5822-5825(2014).

【14】Spasopoulos D, Kaziannis S, Danakas S et al. LSPR based optical fiber sensors treated with nanosecond laser irradiation for refractive index sensing. Sensors and Actuators B: Chemical. 256, 359-366(2018).

【15】Cox F M and Argyros A. Large M C J, et al. Surface enhanced Raman scattering in a hollow core microstructured optical fiber. Optics Express. 15(21), 13675-13681(2007).

【16】Han Y and Tan S L. Oo M K K, et al. Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers. Advanced Materials. 22(24), 2647-2651(2010).

【17】Siarkowska A, Chych?owski M, Budaszewski D et al. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles. Beilstein Journal of Nanotechnology. 8, 2790-2801(2017).

【18】Guo Y, Song B B, Huang W et al. LSPR sensor employing side-polished suspend-core microstructured optical fiber with a silver nanorod. IEEE Sensors Journal. 19(3), 956-961(2019).

【19】Sebastian S and Ajina C. Vallabhan C P G, et al. Fabrication and photostability of rhodamine-6G gold nanoparticle doped polymer optical fiber. Chinese Physics Letters. 30(11), (2013).

【20】Sebastian S, Linslal L, Vallabhan G et al. Random lasing with enhanced photostability of silver nanoparticle doped polymer optical fiber laser. Laser Physics Letters. 11(5), (2014).

【21】Hu Z J, Liang Y Y, Gao P F et al. Random lasing from dye doped polymer optical fiber containing gold nanoparticles. Journal of Optics. 17(12), (2015).

【22】White D J and Stoddart P R. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Optics Letters. 30(6), 598-600(2005).

【23】Guo H Q and Tao S Q. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sensors and Actuators B: Chemical. 123(1), 578-582(2007).

【24】Zheng X L, Guo D W, Shao Y L et al. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir. 24(8), 4394-4398(2008).

【25】Ma X D, Huo H B, Wang W H et al. Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser. Sensors. 10(12), 11064-11071(2010).

【26】Andrade G F S, Hayashi J G, Rahman M M et al. . Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips. Plasmonics. 8(2), 1113-1121(2013).

【27】Cao J, Zhao D, Lei X et al. One-pot hydrothermal synthesis of silver nanoplates on optical fiber tip for surface-enhanced Raman scattering. Applied Physics Letters. 104(20), (2014).

【28】Milenko K, Fuglerud S S, Kjeldby S B et al. Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe. Optics Letters. 43(24), 6029-6032(2018).

【29】Kim H M, Uh M, Jeong D H et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber. Sensors and Actuators B: Chemical. 280, 183-191(2019).

【30】Amezcua-Correa A, Yang J, Finlayson C E et al. Surface-enhanced Raman scattering using microstructured optical fiber substrates. Advanced Functional Materials. 17(13), 2024-2030(2007).

【31】Yang X H and Wang L L. Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing. Optics Communications. 280(2), 368-373(2007).

【32】Peacock A C, Amezcua-Correa A, Yang J X et al. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Applied Physics Letters. 92(14), (2008).

【33】Lin A X, Liu X M, Watekar P R et al. Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity. Applied Physics Letters. 93(2), (2008).

【34】Chattopadhyay R and Bhadra S K. Dispersion tailoring in single mode optical fiber by doping silver nanoparticle. Applied Physics B. 111(3), 399-406(2013).

【35】Sj?din N, Fokine M et al. . Fabrication and optical characterization of silica optical fibers containing gold nanoparticles. ACS Applied Materials & Interfaces. 7(1), 370-375(2015).

【36】Jana N R, Gearheart L and Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials. 13(18), 1389-1393(2001).

【37】Kim F, Song J H and Yang P D. Photochemical synthesis of gold nanorods. Journal of the American Chemical Society. 124(48), 14316-14317(2002).

【38】Ye X C, Gao Y Z, Chen J et al. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Letters. 13(5), 2163-2171(2013).

【39】Chang H H and Murphy C J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm. Chemistry of Materials. 30(4), 1427-1435(2018).

【40】Skrabalak S E, Chen J Y, Sun Y G et al. Gold nanocages: synthesis, properties, and applications. Accounts of Chemical Research. 41(12), 1587-1595(2008).

【41】Kuttner C, Mayer M, Dulle M et al. Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance. ACS Applied Materials & Interfaces. 10(13), 11152-11163(2018).

【42】Xi W J and Haes A J. Elucidation of HEPES affinity to and structure on gold nanostars. Journal of the American Chemical Society. 141(9), 4034-4042(2019).

【43】Pohling C, Campbell J L, Larson T A et al. Smart-dust-nanorice for enhancement of endogenous Raman signal, contrast in photoacoustic imaging, and T2-shortening in magnetic resonance imaging. Small. 14(19), (2018).

【44】Singh P. K?nig T A F, Jaiswal A. NIR-active plasmonic gold nanocapsules synthesized using thermally induced seed twinning for surface-enhanced Raman scattering applications. ACS Applied Materials & Interfaces. 10(45), 39380-39390(2018).

【45】Liang H Y, Wang W Z, Huang Y Z et al. Controlled synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C. 114(16), 7427-7431(2010).

【46】Hu J Q, Chen Q, Xie Z X et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials. 14(2), 183-189(2004).

【47】Huang Z L, Lei X, Liu Y et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Applied Materials & Interfaces. 7(31), 17247-17254(2015).

【48】Lepinay S, Staff A, Ianoul A et al. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosensors and Bioelectronics. 52, 337-344(2014).

【49】Yi J and Jao C Y. Kandas I L N, et al. Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres. Applied Physics Letters. 100(15), (2012).

【50】Shao Y L, Xu S P, Zheng X L et al. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors. 10(4), 3585-3596(2010).

【51】Yap F L, Thoniyot P, Krishnan S et al. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano. 6(3), 2056-2070(2012).

【52】Luo J, Yao J, Lu Y G et al. A silver nanoparticle-modified evanescent field optical fiber sensor for methylene blue detection. Sensors. 13(3), 3986-3997(2013).

【53】Cheng S F and Chau L K. Colloidal gold-modified optical fiber for chemical and biochemical sensing. Analytical Chemistry. 75(1), 16-21(2003).

【54】Huang K T, Lin T J and Hsu M H. Determination of cyclic GMP concentration using a gold nanoparticle-modified optical fiber. Biosensors and Bioelectronics. 26(1), 11-15(2010).

【55】Rithesh Raj D, Prasanth S and Sudarsanakumar C. Development of LSPR-based optical fiber dopamine sensor using L-tyrosine-capped silver nanoparticles and its nonlinear optical properties. Plasmonics. 12(4), 1227-1234(2017).

【56】Rivero P J, Urrutia A, Goicoechea J et al. Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sensors and Actuators B: Chemical. 173, 244-249(2012).

【57】Muri H I and Hjelme D R. LSPR coupling and distribution of interparticle distances between nanoparticles in hydrogel on optical fiber end face. Sensors. 17(12), (2017).

【58】Muri H I, Bano A and Hjelme D R. LSPR and interferometric sensor modalities combined using a double-clad optical fiber. Sensors. 18(1), (2018).

【59】Urrutia A, Goicoechea J, Rivero P J et al. Optical fiber sensors based on gold nanorods embedded in polymeric thin films. Sensors and Actuators B: Chemical. 255, 2105-2112(2018).

【60】Smythe E J, Dickey M D, Bao J M et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Letters. 9(3), 1132-1138(2009).

【61】Lin Y B, Zou Y, Mo Y Y et al. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors. 10(10), 9397-9406(2010).

【62】Cennamo N, Donà A, Pallavicini P et al. Sensitive detection of 2, 4, 6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sensors and Actuators B: Chemical. 208, 291-298(2015).

【63】Wieduwilt T, Zeisberger M, Thiele M et al. Gold-reinforced silver nanoprisms on optical fiber tapers: a new base for high precision sensing. APL Photonics. 1(6), (2016).

【64】Hutter T, Elliott S R and Mahajan S. Optical fibre-tip probes for SERS: numerical study for design considerations. Optics Express. 26(12), 15539-15550(2018).

【65】Russell P. Photonic crystal fibers. Science. 299(5605), 358-362(2003).

【66】Knight J C and Birks T A. Russell P St J, et al. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A. 15(3), 748-752(1998).

【67】Konorov S O, Zheltikov A M and Scalora M. Photonic-crystal fiber as a multifunctional optical sensor and sample collector. Optics Express. 13(9), 3454-3459(2005).

【68】Guo J J, Luo Y Q, Yang C X et al. In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes. Optics Letters. 43(21), 5443-5446(2018).

【69】Li S T, Wang L, Zhai T R et al. Plasmonic random lasing in polymer fiber. Optics Express. 24(12), 12748-12754(2016).

【70】Dhawan A and Muth J F. Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix. Nanotechnology. 17(10), 2504-2511(2006).

【71】García J A, Monzón-Hernández D, Manríquez J et al. One step method to attach gold nanoparticles onto the surface of an optical fiber used for refractive index sensing. Optical Materials. 51, 208-212(2016).

【72】Dou X Y, Zhang J, Chen S M et al. Process optimization and Raman spectroscopy enhancement experiment of multimode tapered fiber SERS probe. Acta Optica Sinica. 38(5), (2018).
窦心怡, 张洁, 陈思孟 等. 锥形光纤SERS探针的工艺优化和拉曼光谱增强实验. 光学学报. 38(5), (2018).

【73】Lin A X, Liu X M, Watekar P R et al. All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals. Optics Letters. 34(6), 791-793(2009).

【74】Halder A, Chattopadhyay R, Majumder S et al. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber. Applied Physics Letters. 106(1), (2015).

【75】Fang Z J, Zheng S P, Peng W C et al. Fabrication and characterization of glass-ceramic fiber-containing Cr 3+ -doped ZnAl2O4 nanocrystals . Journal of the American Ceramic Society. 98(9), 2772-2775(2015).

【76】Fang Z J, Zheng S P, Peng W C et al. Ni 2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment . Optics Express. 23(22), 28258-28263(2015).

【77】Fang Z J, Zheng S P, Peng W C et al. Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method. Journal of the American Ceramic Society. 99(3), 856-859(2016).

【78】Peng W C, Fang Z J, Ma Z J et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb 3+-Er 3+codoped CaF2 nanocrystals . Nanotechnology. 27(40), (2016).

【79】Fang Z J, Xiao X S, Wang X et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers. Scientific Reports. 7, (2017).

【80】Huang X J, Fang Z J, Kang S L et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission. Journal of Materials Chemistry C. 5(31), 7927-7934(2017).

【81】Li M S and Yang C X. Laser-induced silver nanoparticles deposited on optical fiber core for surface-enhanced Raman scattering. Chinese Physics Letters. 27(4), (2010).

【82】Liu T, Xiao X S and Yang C X. Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering. Langmuir. 27(8), 4623-4626(2011).

【83】Fan Q F, Liu Y, Cao J et al. Fabrications for tapered fiber SERS probes with laser-induced chemical deposition method. Chinese Journal of Lasers. 41(3), (2014).
范群芳, 刘晔, 曹杰 等. 利用激光诱导化学沉积法制备锥形光纤SERS探针. 中国激光. 41(3), (2014).

【84】Chen I C, Lin S S, Lin T J et al. Detection of hydrofluoric acid by a SiO2 sol-gel coating fiber-optic probe based on reflection-based localized surface plasmon resonance. Sensors. 11(2), 1907-1923(2011).

【85】Vasconcelos H, Jorge P A S et al. . Plasmonic optical fiber sensor based on double step growth of gold nano-islands. Sensors. 18(4), (2018).

【86】Ricard D, Roussignol P and Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids. Optics Letters. 10(10), 511-513(1985).

【87】Hache F, Ricard D and Flytzanis C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects. Journal of the Optical Society of America B. 3(12), 1647-1655(1986).

【88】Ju S, Nguyen V L, Watekar P R et al. Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles. Journal of Nanoscience and Nanotechnology. 6(11), 3555-3558(2006).

【89】Bigot L, el Hamzaoui H, le Rouge A et al. . Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber. Optics Express. 19(20), 19061-19066(2011).

【90】Halder A, Paul M C, Das S et al. Experimental study of metal nano-particle doped optical fiber and its unique spectral property. [C]∥International Conference on Fibre Optics and Photonics, December 9-12, 2012, Chennai, India. Washington, D C: OSA. M3B, (2012).

【91】Sugimoto N, Kanbara H, Fujiwara S et al. Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses. Journal of the Optical Society of America B. 16(11), 1904-1908(1999).

【92】Singh S P and Karmakar B. Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag∶bismuth glass nanocomposites. Plasmonics. 6(3), 457-467(2011).

【93】Chen F F, Cheng J W, Dai S X et al. Z-scan and optical Kerr shutter studies of silver nanoparticles embedded bismuthate glasses. Journal of Non-Crystalline Solids. 377, 151-154(2013).

【94】Chen F F, Cheng J W, Dai S X et al. Third-order optical nonlinearity at 800 and 1300 nm in bismuthate glasses doped with silver nanoparticles. Optics Express. 22(11), 13438-13447(2014).

【95】Chen F F, Cheng J W, Dai S X et al. Formation and third-order optical nonlinearities of silver nano-crystals embedded bismuthate glasses. Materials Research Bulletin. 48(11), 4667-4672(2013).

【96】Tu M H and Sun T. Grattan K T V. Optimization of gold-nanoparticle-based optical fibre surface plasmon resonance (SPR)-based sensors. Sensors and Actuators B: Chemical. 164(1), 43-53(2012).

【97】Ortega-Mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C et al. . Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors. 14(10), 18701-18710(2014).

【98】Tu M H and Sun T. Grattan K T V. LSPR optical fibre sensors based on hollow gold nanostructures. Sensors and Actuators B: Chemical. 191, 37-44(2014).

【99】Gowri A. Sai V V R. Development of LSPR based U-bent plastic optical fiber sensors. Sensors and Actuators B: Chemical. 230, 536-543(2016).

【100】Ohodnicki P R. Jr, Buric M P, Brown T D, et al. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures. Nanoscale. 5(19), 9030-9039(2013).

【101】Luan N N, Wang R, Lü W H et al. Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors. 14(9), 16035-16045(2014).

【102】Wang P, Zhang L, Xia Y N et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing. Nano Letters. 12(6), 3145-3150(2012).

【103】Mullen K I and Carron K T. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes. Analytical Chemistry. 63(19), 2196-2199(1991).

【104】Su L, Lee T H and Elliott S R. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper. Optics Letters. 34(17), 2685-2687(2009).

【105】Li M, Li K W, Dai F et al. Highly sensitive optical nanofiber sensor based on gold nanorod amplification. Acta Optica Sinica. 35(12), (2015).
李明, 李凯伟, 代方 等. 基于金纳米棒放大的高灵敏度纳米光纤生化传感器. 光学学报. 35(12), (2015).

【106】Yang X, Gu C, Qian F et al. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Analytical Chemistry. 83(15), 5888-5894(2011).

【107】Danny C G and Subrahmanyam A. Sai V V R. Development of plasmonic U-bent plastic optical fiber probes for surface enhanced Raman scattering based biosensing. Journal of Raman Spectroscopy. 49(10), 1607-1616(2018).

【108】Wang C, Zeng L H, Li Z et al. Review of optical fibre probes for enhanced Raman sensing. Journal of Raman Spectroscopy. 48(8), 1040-1055(2017).

【109】Hu D J J and Ho H P. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Advances in Optics and Photonics. 9(2), 257-314(2017).

【110】Stoddart P R and White D J. Optical fibre SERS sensors. Analytical and Bioanalytical Chemistry. 394(7), 1761-1774(2009).

【111】Wang A X and Kong X M. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials. 8(6), 3024-3052(2015).

【112】Kang H, Buchman J T, Rodriguez R S et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chemical Reviews. 119(1), 664-699(2019).

引用该论文

Zhijun Ma, Bofan Jiang, Qi Xu, Jianrong Qiu. Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170610

马志军, 江博凡, 许琦, 邱建荣. 金属纳米晶复合光纤的制造和应用[J]. 激光与光电子学进展, 2019, 56(17): 170610

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF