Photonics Research, 2019, 7 (11): 11001240, Published Online: Oct. 22, 2019  

Bosonic discrete supersymmetry for quasi-two-dimensional optical arrays

Author Affiliations
1 Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA
2 Henes Center for Quantum Phenomena, Michigan Technological University, Houghton, Michigan 49931, USA
3 College of Optics & Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
Abstract
We apply the notion of discrete supersymmetry based on matrix factorization to quantum systems consisting of coupled bosonic oscillators to construct isospectral bosonic quantum networks. By using the algebra that arises due to the indistinguishability of bosonic particles, we write down the Schr dinger equations for these oscillators in the different boson-number sectors. By doing so, we obtain, for every partner quantum network, a system of coupled differential equations that can be emulated by classical light propagation in optical waveguide arrays. This mathematical scheme allows us to build quasi-two-dimensional optical arrays that are either isospectral or share only a subset of their spectrum after deliberately omitting some chosen eigenstates from the spectrum. As an example, we use this technique (which we call bosonic discrete supersymmetry or BD-SUSY) to design two optical, silica-based waveguide arrays consisting of six and three elements, respectively, with overlapping eigenspectrum.

Q. Zhong, S. Nelson, M. Khajavikhan, D. N. Christodoulides, R. El-Ganainy. Bosonic discrete supersymmetry for quasi-two-dimensional optical arrays[J]. Photonics Research, 2019, 7(11): 11001240.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!