首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1113003--1)

类Sagnac干涉仪结构的三维多微环谐振滤波器

Three-Dimensional Multi-Microring Resonance Filter Based on Sagnac-Like Interferometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

Sagnac干涉仪在光学滤波领域有着重要应用。基于三维氮化硅波导平台,利用双层的多微环系统实现了新型类Sagnac谐振滤波系统,其中底层主微环腔分别与顶层输入/输出波导和单/双子微环实现了反馈耦合。光经耦合区域产生了两束相向传输并互相干涉的光波,从而实现了滤波波形和谐振峰位可调的滤波结构。基于传输矩阵和迭代方法分析输出光谱,通过改变波导与微腔的耦合系数设计输出光谱波形,利用金属加热电极调制主微腔的相位以调控谐振峰位。理论分析和实验表征结果表明,通过增加顶层子微环数可有效增强器件的密集滤波效果,此三维集成结构可提供更多的设计自由度。相关的多微环谐振滤波系统可以广泛应用于光通信和光传感等领域。

Abstract

Sagnac interferometers have important applications in the field of optical filtering. Based on the 3D silicon nitride waveguide platform, we obtained a new Sagnac-like resonance filter system by using a two-layer multi-microring system. In the new system, the bottom main microring cavity was coupled via feedback with the top input/output waveguide and the single/double sub-microrings, respectively. Furthermore, two light waves transmitting in the opposite direction were generated in the coupling area and interfered with each other, thereby a filter structure with adjustable filtering waveforms and resonance peak positions is realized. In this paper, a transmission matrix and an iteration method were used to analyze the output spectra, and the output waveform was designed by changing the coupling coefficient between the waveguide and the microcavity. Besides, the phase of the main microcavity was modulated by the metal heating electrode to regulate the resonance peak position. The theoretical analysis and experimental characterization results show that the dense filtering effect of the device can be effectively improved by adding top sub-microrings and thus the 3D integrated structure can provide greater design freedom. The related multi-microring resonance filter system can be widely used in optical communication, optical sensing, and other fields.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.1113003

所属栏目:微纳光学

基金项目:国家自然科学基金、上海市自然科学基金、上海市青年科技启明星、 上海高校特聘教授岗位计划;

收稿日期:2020-04-23

修改稿日期:2020-07-02

网络出版日期:2020-11-01

作者单位    点击查看

张福领:中国电子科技集团公司第二十七研究所, 河南 郑州 450047
翟珊:上海理工大学光电信息与计算机工程学院, 上海市现代光学系统重点实验室, 上海 200093
潘俊:上海理工大学光电信息与计算机工程学院, 上海市现代光学系统重点实验室, 上海 200093
冯吉军:上海理工大学光电信息与计算机工程学院, 上海市现代光学系统重点实验室, 上海 200093

联系人作者:冯吉军(fjijun@usst.edu.cn)

备注:国家自然科学基金、上海市自然科学基金、上海市青年科技启明星、 上海高校特聘教授岗位计划;

【1】Song Y J, Zhan L, Hu S, et al. Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter [J]. IEEE Photonics Technology Letters. 2004, 16(9): 2015-2017.Song Y J, Zhan L, Hu S, et al. Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter [J]. IEEE Photonics Technology Letters. 2004, 16(9): 2015-2017.

【2】Song J F, Zhao H W, Fang Q, et al. Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI [J]. Optics Express. 2008, 16(26): 21476-21482.

【3】Chew Y H, Tjhung T T. Mendis F V C. An optical filter of adjustable finesse using an amplified fiber ring resonator [J]. Journal of Lightwave Technology. 1997, 15(2): 364-370.

【4】Choudhary A, Liu Y, Marpaung D, et al. On-chip Brillouin filtering of RF and optical signals [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2018, 24(6): 7600211.

【5】Fan S H. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems [J]. Applied Physics Letters. 2002, 80(6): 908-910.

【6】Xiao G L, Liu L, Yang H Y, et al. Light transmission characteristics of metal curved waveguide based on microcavity coupling structures [J]. Acta Optica Sinica. 2017, 37(12): 1213001.
肖功利, 刘利, 杨宏艳, 等. 基于微腔耦合结构金属弯曲波导的光透射特性 [J]. 光学学报. 2017, 37(12): 1213001.

【7】Li J, Zheng P F, Xu X M, et al. Reconfigurable microwave photonic bandpass filter based on silicon nitride microring and carrier separation [J]. Laser & Optoelectronics Progress. 2020, 57(1): 011301.
李静, 郑鹏飞, 徐雪朦, 等. 基于氮化硅微环和载波分离的可重构微波光子带通滤波器 [J]. 激光与光电子学进展. 2020, 57(1): 011301.

【8】Hsieh C H, Wang R B, Wen Z J, et al. Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer [J]. IEEE Photonics Technology Letters. 2003, 15(2): 242-244.

【9】Luo L, Ibrahim S, Nitkowski A, et al. High bandwidth on-chip silicon photonic interleaver [J]. Optics Express. 2010, 18(22): 23079-23087.

【10】Capmany J, Mu?oz P, Sales S, et al. Arrayed waveguide Sagnac interferometer [J]. Optics Letters. 2003, 28(3): 197-199.

【11】Naeem K, Kim B H, Kim B, et al. Simultaneous multi-parameter measurement using Sagnac loop hybrid interferometer based on a highly birefringent photonic crystal fiber with two asymmetric cores [J]. Optics Express. 2015, 23(3): 3589-3601.

【12】Shi N N, Gu Y Y, Hu J J, et al. Study of the tunable optical comb filter based on Sagnac interferometer loop [J]. Acta Optica Sinica. 2014, 34(3): 0306001.
石暖暖, 谷一英, 胡晶晶, 等. 基于Sagnac环可调谐光梳状滤波器特性研究 [J]. 光学学报. 2014, 34(3): 0306001.

【13】Zhang J, Qiao X G, Guo T, et al. Highly sensitive temperature sensor using PANDA fiber Sagnac interferometer [J]. Journal of Lightwave Technology. 2011, 29(24): 3640-3644.

【14】Cheng Z M, Zeng J, Chang C, et al. Structural impact localization based on optical fiber Sagnac sensing technique [J]. Acta Optica Sinica. 2018, 38(10): 1006004.
程竹明, 曾捷, 常晨, 等. 基于光纤Sagnac传感技术的结构冲击定位 [J]. 光学学报. 2018, 38(10): 1006004.

【15】Fang X J, Claus R O. Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer [J]. Optics Letters. 1995, 20(20): 2146-2148.

【16】Zhu X J, Geng J, Zhang G A, et al. Tunable double pulse dissipative solitons Yb-doped fiber laser based on Sagnac loop [J]. Acta Optica Sinica. 2019, 39(4): 0414002.
朱晓军, 耿健, 章国安, 等. 基于Sagnac环的可调谐双脉冲耗散孤子掺Yb光纤激光器 [J]. 光学学报. 2019, 39(4): 0414002.

【17】Liu S, Yang Y H, Chen Y X. Phase interrogation algorithm with high resolution for hybrid Sagnac interferometers [J]. Chinese Journal of Lasers. 2015, 42(10): 1005006.
刘硕, 杨远洪, 陈宇轩. 混合Sagnac干涉仪高分辨率相位解调算法 [J]. 中国激光. 2015, 42(10): 1005006.

【18】Ma K, Zhang Y, Wu Y, et al. Tunable dual-channel filter based on an add-drop resonator Sagnac interferometer [J]. Journal of the Optical Society of America B. 2017, 34(11): 2400-2405.

【19】Xu M, Yang W, Hong T, et al. Ultrafast all-optical flip-flop based on passive micro Sagnac waveguide ring with photonic crystal fiber [J]. Applied Optics. 2017, 56(16): 4577-4584.

【20】Zhou N, Zheng S, Long Y, et al. Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform [J]. Optics Express. 2018, 26(4): 4358-4369.

【21】Qian G, Zhang T, Zhang L J, et al. Demonstrations of centimeter-scale polymer resonator for resonant integrated optical gyroscope [J]. Sensors and Actuators A: Physical. 2016, 237: 29-34.

【22】Moss D J, Morandotti R, Gaeta A L, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics [J]. Nature Photonics. 2013, 7(8): 597-607.

【23】Xie W Q, Zhu Y P, Aubert T, et al. Low-loss silicon nitride waveguide hybridly integrated with colloidal quantum dots [J]. Optics Express. 2015, 23(9): 12152-12160.

【24】Barwicz T, Popovic M A, Rakich P T, et al. Microring-resonator-based add-drop filters in SiN: fabrication and analysis [J]. Optics Express. 2004, 12(7): 1437-1442.

【25】Vivien L, Marris-Morini D, Griol A, et al. Vertical multiple-slot waveguide ring resonators in silicon nitride [J]. Optics Express. 2008, 16(22): 17237-17242.

【26】Fei Y, He Y M, Yang F H, et al. Effect of backreflection and normal mode loss on the transmission of waveguide ring resonator [J]. Chinese Journal of Lasers. 2018, 45(5): 0513001.
费瑶, 何玉铭, 杨富华, 等. 端面反射和超模损耗对波导环形谐振腔输出谱线的影响 [J]. 中国激光. 2018, 45(5): 0513001.

【27】Xu X M, Zheng P F, Li J, et al. Delay test of tunable silicon nitride micro-ring based on optical vector-network analysis [J]. Act Optica Sinica. 2019, 39(11): 1113001.
徐雪朦, 郑鹏飞, 李静, 等. 基于光矢量网络分析的可调氮化硅微环延时测试研究 [J]. 光学学报. 2019, 39(11): 1113001.

【28】Feng J J, Akimoto R. T-shape suspended silicon nitride ring resonator for optical sensing applications [J]. IEEE Photonics Technology Letters. 2015, 27(15): 1601-1604.

【29】Zhai S, Feng J J, Sun X Y, et al. Vertically integrated waveguide self-coupled resonator based tunable optical filter [J]. Optics Letters. 2018, 43(15): 3766-3769.

【30】Zhai S, Feng J J, Sun X Y, et al. Dual-layer cross-coupled tunable resonator system in a three-dimensional Si3N4 photonic integration platform [J]. Journal of Lightwave Technology. 2019, 37(13): 3298-3304.

【31】Hong J, Huang W, Makino T. On the transfer matrix method for distributed-feedback waveguide devices [J]. Journal of Lightwave Technology. 1992, 10(12): 1860-1868.

【32】Zhou L J. Poon A W O. Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback [J]. Optics Express. 2007, 15(15): 9194-9204.

【33】Zhou X T, Zhang T, Yin X, et al. Dynamically tunable electromagnetically induced transparency in graphene-based coupled micro-ring resonators [J]. IEEE Photonics Journal. 2017, 9(2): 6600609.

【34】Pan J, Zhai S, Feng J, et al. Double-layer cross-coupled silicon nitride multi-ring resonator systems [J]. IEEE Photonics Technology Letters. 2020, 32(5): 227-230.

引用该论文

Zhang Fuling,Zhai Shan,Pan Jun,Feng Jijun. Three-Dimensional Multi-Microring Resonance Filter Based on Sagnac-Like Interferometer[J]. Chinese Journal of Lasers, 2020, 47(11): 1113003

张福领,翟珊,潘俊,冯吉军. 类Sagnac干涉仪结构的三维多微环谐振滤波器[J]. 中国激光, 2020, 47(11): 1113003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF