Highly efficient difference-frequency generation for mid-infrared pulses by passively synchronous seeding
Abstract
We have proposed and experimentally demonstrated a novel scheme for efficient mid-infrared difference-frequency generation based on passively synchronized fiber lasers. The adoption of coincident seeding pulses in the nonlinear conversion process could substantially lower the pumping threshold for mid-infrared parametric emission. Consequently, a picosecond mid-infrared source at 3.1 μm was prepared with watt-level average power, and a maximum power conversion efficiency of 77% was realized from pump to down-converted light. Additionally, the long-term stability of generated power was manifested with a relative fluctuation as low as 0.17% over one hour. Thanks to the all-optical passive synchronization and all-polarization-maintaining fiber architecture, the implemented laser system was also featured with simplicity, compactness and robustness, which would favor subsequent applications beyond laboratory operation.
所属栏目:Research Articles
基金项目:This work was supported in part by the National Key Research and Development Program (No. 2018YFB0407100), Science and Technology Innovation Program of Basic Science Foundation of Shanghai (No. 18JC1412000), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, National Natural Science Foundation of China (Nos. 11621404 and 11727812), and Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX01).
收稿日期:2020-10-18
录用日期:2020-12-02
网络出版日期:2021-01-15
作者单位 点击查看
Yinqi Wang:State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
Jianan Fang:State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
Huaixi Chen:Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, China;University of Chinese Academy of Sciences, Beijing100049, China
Minghang Xu:Shanghai Key Laboratory of Modern Optical System, and Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
Qiang Hao:Shanghai Key Laboratory of Modern Optical System, and Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
Ming Yan:State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
Heping Zeng:State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China;Jinan Institute of Quantum Technology, Jinan250101, China;CAS Center for Excellence in Ultra-intense Laser Science, Shanghai201800, China;Shanghai Research Center for Quantum Sciences, Shanghai201315, China
联系人作者:Kun Huang(khuang@lps.ecnu.edu.cn); Heping Zeng(hpzeng@phy.ecnu.edu.cn);
备注:Correspondence to: K. Huang, No. 500 Dongchuan Road, Shanghai 200241, China. Email: khuang@lps.ecnu.edu.cn (K. Huang)
【1】M. Ebrahim-Zadeh and I. T. Sorokina. Mid-infrared Coherent Sources and Applications. : Springer, (2008).
【2】A. Schliesser, N. Picqué and T. W. H?nsch. Nat. Photonics. 6, (2012).
【3】V. A. Serebryakov, é. V. Bo?ko, N. N. Petrishchev and A. V. Yan. J. Opt. Technol. 77, (2010).
【4】Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden and B. Luther-Davies. Opt. Mater. Express. 3, (2013).
【5】K. Liu, J. Liu, H. Shi, F. Tan and P. Wang. Opt. Express. 22, (2014).
【6】A. V. Muraviev, V. O. Smolski, Z. E. Loparo and K. L. Vodopyanov. Nat. Photonics. 12, (2018).
【7】C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang and D. T. Reid. Opt. Lett. 38, (2013).
【8】P. Liu and Z. Zhang. Opt. Lett. 44, (2019).
【9】Y. Yao, A. J. Hoffman and C. Gmachl. Nat. Photonics. 6, (2012).
【10】S. D. Jackson. Nat. Photonics. 6, (2012).
【11】X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood and N. Peyghambarian. J. Opt. Soc. Am. B. 34, (2017).
【12】J. Ma, Z. Qin, G. Xie, L. Qian and D. Tang. Appl. Phys. Rev. 6, (2019).
【13】S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev and V. Gapontsev. IEEE J. Sel. Top. Quantum Electron. 24, (2018).
【14】M. H. Dunn and M. Ebrahimzadeh. Science. 286, (1999).
【15】L. Xu, H. Chan, S. Alam, D. J. Richardson and D. P. Shepherd. Opt. Express. 23, (2015).
【16】P. Belden, D. Chen and F. Di Teodoro. Opt. Lett. 40, (2015).
【17】W. Yue, Y. Ding, B. Wu and Y. Shen. Opt. Lett. 45, (2020).
【18】C. Hu, W. Yue, T. Chen, P. Jiang, B. Wu and Y. Shen. Appl. Opt. 56, (2017).
【19】V. Silva de Oliveira, A. Ruehl, P. Mas?owski and I. Hartl. Opt. Lett. 45, (2020).
【20】G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski and A. Foltynowicz. Opt. Lett. 42, (2017).
【21】T. Steinle, A. Steinmann, R. Hegenbarth and H. Giessen. Opt. Express. 22, (2014).
【22】H. Tian, Y. Song, J. Yu, H. Shi and M. Hu. IEEE Photon. J. 9, (2017).
【23】R. T. Murray, T. H. Runcorn, E. J. R. Kelleher and J. R. Taylor. Opt. Lett. 41, (2016).
【24】H. Xuan, Y. Zou, S. Wang, H. Han, Z. Wang and Z. Wei. Appl. Phys. B. 108, (2012).
【25】K. Huang, J. Zeng, J. Gan, Q. Hao, M. Yan and H. Zeng. Opt. Express. 26, (2018).
【26】Y. Li, K. Zhao, B. Cao, X. Xiao and C. Yang. Opt. Lett. 45, (2020).
【27】F. Chen, Q. Hao and H. Zeng. IEEE Photon. Tech. Lett. 29, (2017).
【28】W. H?nsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer and R. Holzwarth. Appl. Phys. B. 123, (2017).
【29】B. Tsai, S. Wu, C. Hu, W. Hsiang and Y. Lai. Opt. Lett. 38, (2013).
【30】K. Franjic, M. L. Cowan, D. Kraemer and R. J. Dwayne Miller. Opt. Express. 17, (2009).
【31】A. Rudenko, P. Rosenow, V. Hasson and J. V. Moloney. Optica. 7, (2020).
引用该论文
Kun Huang, Yinqi Wang, Jianan Fang, Huaixi Chen, Minghang Xu, Qiang Hao, Ming Yan, and Heping Zeng, "Highly efficient difference-frequency generation for mid-infrared pulses by passively synchronous seeding," High Power Laser Science and Engineering 9(1), e4 (2021)