首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1001005--1)

拉盖尔-高斯涡旋光束在水下湍流中的传输特性

Propagation Characteristics of Laguerre-Gaussian Vortex Beams in Underwater Turbulence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于涡旋光干涉条纹偏移检测的水下湍流识别方法。利用随机相位屏法对拉盖尔-高斯光束在湍流中的传输及干涉特性进行理论模拟。在此基础上,实验研究了不同拓扑荷数涡旋光束经湍流场后与高斯光束干涉所得条纹的偏移特性。实验及理论结果表明:在较强湍流环境中,拓扑荷数越大,涡旋光束传输能力越强;相同湍流强度下,拓扑荷数越大,干涉条纹位置偏移量越小;相同拓扑荷数涡旋光的干涉条纹偏移量随湍流强度的增大而增大。这表明,涡旋光干涉条纹偏移检测法可有效地检测湍流强度,识别舰船尾流。

Abstract

An underwater turbulence recognition method based on the detection of vortex interference stripe displacement is proposed. The transmission and interference characteristics of the Laguerre-Gaussian beam in underwater turbulence are simulated using the random phase screen method. The displacement characteristics of the stripes caused by the interference between vortex beams with different topological charges and Gauss beams in free space after turbulence are studied and experimentally analyzed. Experimental and theoretical results show that in a strong turbulent environment, the larger the topological charge, the better the transmission ability of the vortex beams propagating in the turbulence; under the same turbulence intensity, the larger the topological charge, the smaller the displacement of the position of interference stripes. The displacement of interference stripes increases with increasing turbulence intensity of vortex beams with similar topological charges. This indicates that the method for detecting the displacement of vortex interference stripes can effectively detect turbulence intensity and ship wake.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P733.3

DOI:10.3788/AOS201939.1001005

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金、水下测控技术重点实验室基金;

收稿日期:2019-05-08

修改稿日期:2019-06-21

网络出版日期:2019-10-01

作者单位    点击查看

孙艳玲:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
张家瑞:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
鲁振中:西安电子科技大学物理与光电工程学院, 陕西 西安 710071

联系人作者:鲁振中(zzluxidian@126.com)

备注:国家自然科学基金、水下测控技术重点实验室基金;

【1】Korotkova O and Farwell N. Effect of oceanic turbulence on polarization of stochastic beams [J]. Optics Communications. 2011, 284(7): 1740-1746.

【2】Tang M M and Zhao D M. Propagation of radially polarized beams in the oceanic turbulence [J]. Applied Physics B. 2013, 111(4): 665-670.

【3】Anguita J A, Rodriguez H and Quezada C. Experimental propagation of optical Laguerre-Gauss beams in turbulence . [C]//2014 IEEE Aerospace Conference, March 1-8, 2014, Big Sky, MT, USA. New York: IEEE. 2014, 6836359:

【4】Yang T, Ji X L and Li X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence [J]. Acta Physica Sinica. 2015, 64(20): 204206.
杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性 [J]. 物理学报. 2015, 64(20): 204206.

【5】Liu Y X, Chen Z Y and Pu J X. Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence [J]. Acta Physica Sinica. 2017, 66(12): 124205.
刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性 [J]. 物理学报. 2017, 66(12): 124205.

【6】Qian X M and Rao R Z. Spatial distribution of Gaussian-beam scintillation in atmosphere by numerical simulation [J]. Chinese Journal of Quantum Electronics. 2006, 23(3): 320-324.
钱仙妹, 饶瑞中. 高斯光束大气闪烁空间分布的数值模拟研究 [J]. 量子电子学报. 2006, 23(3): 320-324.

【7】Cheng W, Haus J W and Zhan Q W. Propagation of vector vortex beams through a turbulent atmosphere [J]. Optics Express. 2009, 17(20): 17829-17836.

【8】Toselli I and Korotkova O. General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance [J]. Journal of the Optical Society of America A. 2015, 32(6): 1017-1025.

【9】Niu H H and Han Y P. Performance analysis of Bessel-Gaussian vortex beam''''s propagation in atmospheric turbulence [J]. Laser Technology. 2017, 41(3): 451-455.
牛化恒, 韩一平. 大气湍流中贝塞尔-高斯涡旋光束传播性能分析 [J]. 激光技术. 2017, 41(3): 451-455.

【10】Wang H Y, Chen C L, Du J L et al. Propagation of Bessel-Gaussian beam with optical vortices in turbulent atmosphere [J]. Acta Photonica Sinica. 2013, 42(5): 505-510.
王海燕, 陈川琳, 杜家磊 等. 贝塞尔高斯涡旋光束在大气湍流中的传输特性 [J]. 光子学报. 2013, 42(5): 505-510.

【11】Wu Z S and Li Y Q. Scattering of a partially coherent Gaussian-Schell beam from a diffuse target in slant atmospheric turbulence [J]. Journal of the Optical Society of America A. 2011, 28(7): 1531-1539.

【12】Ge X L, Wang B Y and Guo C S. Evolution of phase singularities of vortex beams propagating in atmospheric turbulence [J]. Journal of the Optical Society of America A. 2015, 32(5): 837-842.

【13】Zhu K C, Zhou G Q, Li X G et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere [J]. Optics Express. 2008, 16(26): 21315-21320.

【14】Eyyubo lu H T. Propagation of higher order Bessel-Gaussian beams in turbulence [J]. Applied Physics B. 2007, 88(2): 259-265.

【15】Porfirev A P, Kirilenko M S, Khonina S N et al. Study of propagation of vortex beams in aerosol optical medium [J]. Applied Optics. 2017, 56(11): E8-E15.

【16】Baghdady J, Miller K, Morgan K et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing [J]. Optics Express. 2016, 24(9): 9794-9805.

【17】Cheng M J, Guo L X, Li J T et al. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean [J]. Applied Optics. 2016, 55(17): 4642-4648.

【18】Xu J, Tang M M and Zhao D M. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence [J]. Optics Communications. 2014, 331: 1-5.

【19】Tang M M and Zhao D M. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean [J]. Optics Communications. 2014, 312: 89-93.

【20】Xu J and Zhao D M. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence [J]. Optics & Laser Technology. 2014, 57: 189-193.

【21】Peng B, Zhong K and Li Z Y. Influence of topological charge on turbid underwater propagation of Laguerre-Gaussian vortex beams [J]. Acta Optica Sinica. 2017, 37(6): 0601005.
彭波, 钟昆, 李中云. 拓扑荷数对拉盖尔-高斯涡旋光浑浊水下传输的影响 [J]. 光学学报. 2017, 37(6): 0601005.

【22】Yang T X and Zhao S M. Random phase screen model of ocean turbulence [J]. Acta Optica Sinica. 2017, 37(12): 1201001.
杨天星, 赵生妹. 海洋湍流随机相位屏模型 [J]. 光学学报. 2017, 37(12): 1201001.

【23】Niu C J, Lu F and Han X E. Propagation properties of Gaussian array beams transmitted in oceanic turbulence simulated by phase screen method [J]. Acta Optica Sinica. 2018, 38(6): 0601004.
牛超君, 卢芳, 韩香娥. 相位屏法模拟高斯阵列光束海洋湍流传输特性 [J]. 光学学报. 2018, 38(6): 0601004.

引用该论文

Sun Yanling,Zhang Jiarui,Lu Zhenzhong. Propagation Characteristics of Laguerre-Gaussian Vortex Beams in Underwater Turbulence[J]. Acta Optica Sinica, 2019, 39(10): 1001005

孙艳玲,张家瑞,鲁振中. 拉盖尔-高斯涡旋光束在水下湍流中的传输特性[J]. 光学学报, 2019, 39(10): 1001005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF