首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1441-1447)

Synchronous nanoscale topographic and chemical mapping by differential-confocal controlled Raman microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Confocal Raman microscopy is currently used for label-free optical sensing and imaging within the biological, engineering, and physical sciences as well as in industry. However, currently these methods have limitations, including their low spatial resolution and poor focus stability, that restrict the breadth of new applications. This paper now introduces differential-confocal controlled Raman microscopy as a technique that fuses differential confocal microscopy and Raman spectroscopy, enabling the point-to-point collection of three-dimensional nanoscale topographic information with the simultaneous reconstruction of corresponding chemical information. The microscope collects the scattered Raman light together with the Rayleigh light, both as Rayleigh scattered and reflected light (these are normally filtered out in conventional confocal Raman systems). Inherent in the design of the instrument is a significant improvement in the axial focusing resolution of topographical features in the image (to 1 nm), which, when coupled with super-resolution image restoration, gives a lateral resolution of 220 nm. By using differential confocal imaging for controlling the Raman imaging, the system presents a significant enhancement of the focusing and measurement accuracy, precision, and stability (with an antidrift capability), mitigating against both thermal and vibrational artefacts. We also demonstrate an improved scan speed, arising as a consequence of the nonaxial scanning mode.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.394537

所属栏目:Instrumentation and Measurements

基金项目:Key Program of National Natural Science Foundation of China; Engineering and Physical Sciences Research Council10.13039/501100000266;

收稿日期:2020-04-06

录用日期:2020-07-06

网络出版日期:2020-07-07

作者单位    点击查看

Han Cui:Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
Yun Wang:Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Lirong Qiu:Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Shucheng Li:Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Jonathan M. Cooper:Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
Weiqian Zhao:Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

联系人作者:Weiqian Zhao(zwq669@126.com)

备注:Key Program of National Natural Science Foundation of China; Engineering and Physical Sciences Research Council10.13039/501100000266;

【1】P. Kun, G. Kukucska, G. Dobrik, J. Koltai, J. Kürti, L. P. Biró, L. Tapasztó and P. Nemes-Incze. Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. npj 2D Mater. Appl. 3, (2019).

【2】T. Ukmar-Godec, L. Bertinetti, J. W. Dunlop, A. Godec, M. A. Grabiger, A. Masic, H. Nguyen, I. Zlotnikov, P. Zaslansky and D. Faivre. Materials nanoarchitecturing via cation–mediated protein assembly: making limpet teeth without mineral. Adv. Mater. 29, (2017).

【3】X. Zhou, X. Hu, B. Jin, J. Yu, K. Liu, H. Li and T. Zhai. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 5, (2018).

【4】G. J. Puppels, F. F. M. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin and T. M. Jovin. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 347, 301-303(1990).

【5】N. Altangerel, G. O. Ariunbold, C. Gorman, M. H. Alkahtani, E. J. Borrego, D. Bohlmeyer, P. Hemmer, M. V. Kolomiets, J. S. Yuan and M. O. Scully. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. USA. 114, 3393-3396(2017).

【6】S. Pal, A. Ray, C. Andreou, Y. Zhou, T. Rakshit, M. Wlodarczyk, M. Maeda, R. Toledo-Crow, N. Berisha, J. Yang, H. Hsu, A. Oseledchyk, J. Mondal, S. Zou and M. F. Kircher. DNA-enabled rational design of fluorescence-Raman, bimodal nanoprobes for cancer imaging and therapy. Nat. Commun. 10, (2019).

【7】M. Y. Huang, H. G. Yan, T. F. Heinz and J. Hone. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074-4079(2010).

【8】D. R. Klein, D. MacNeill, Q. Song, D. T. Larson, S. Fang, M. Xu, R. A. Ribeiro, P. C. Canfield, E. Kaxiras, R. Comin and P. Jarillo-Herrero. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255-1260(2019).

【9】W. Dai, F. Shao, J. Szczerbiński, R. McCaffrey, R. Zenobi, Y. Jin, A. D. Schlüter and W. Zhang. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. 55, 213-217(2016).

【10】T. Wilson and A. R. Carlini. Three-dimensional imaging in confocal imaging systems with finite sized detectors. J. Microsc. 149, 51-66(1988).

【11】R. D. FrankelR. D. Frankel. Dipole-like backscatter stimulated Raman scattering for in vivo imaging. J. Raman Spectrosc. 45, 764-772(2014).

【12】K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye and S. Kawata. Raman microscopy for dynamic molecular imaging of living cells. J. Biomed. Opt. 13, (2008).

【13】K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata and K. Fujita. Structured line illumination Raman microscopy. Nat. Commun. 6, (2015).

【14】L. Duponchela, P. Milanfar, C. Ruckebusch and J. Huvenne. Super-resolution and Raman chemical imaging: from multiple low resolution images to a high resolution image. Anal. Chim. Acta. 607, 168-175(2008).

【15】J. P. Smith, F. C. Smith, J. Ottaway, A. E. Krull-Davatzes, B. M. Simonson, B. P. Glass and K. S. Booksh. Raman microspectroscopic mapping with multivariate curve resolution-alternating least squares (MCR-ALS) applied to the high-pressure polymorph of titanium dioxide, TiO2-II. Appl. Spectrosc. 71, 1816-1833(2017).

【16】R. W. Havener, A. W. Tsen, H. C. Choi and J. Park. Laser-based imaging of individual carbon nanostructures. NPG Asia Mater. 3, 91-99(2011).

【17】W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor and S. Cabrini. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science. 338, 1317-1321(2012).

【18】H. J. Cho, K. W. Oh, C. H. Ahn, P. Boolchand and T.-C. Nam. Stress analysis of silicon membranes with electroplated permalloy films using Raman scattering. IEEE Trans. Magn. 37, 2749-2751(2001).

【19】P. J. Caspers, G. W. Lucassen and G. J. Puppels. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J. 85, 572-580(2003).

【20】M. AndersonM. Anderson. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130-3132(2000).

【21】F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Claudio Andreani and E. Di Fabrizio. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5, 67-72(2010).

【22】N. Hayazawa, Y. Inouye, Z. Sekkat and S. Kawata. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333-336(2000).

【23】T. Dieing, J. Toporski, T. Dieing and O. Hollricher. Resolution and performance of 3D confocal Raman imaging systems. Confocal Raman Microscopy. : Springer, 121-153(2018).

【24】N. Anderson, A. Hartschuh, S. Cronin and L. Novotny. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533-2537(2005).

【25】J. Stadler, T. Schmid and R. Zenobi. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett. 10, 4514-4520(2010).

【26】T. Yano, P. Verma, Y. Saito, T. Ichimura and S. Kawata. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometers. Nat. Photonics. 3, 473-477(2009).

【27】S. Jiang, Y. Zhang, R. Zhang, C. Hu, M. Liao, Y. Luo, J. Yang, Z. C. Dong and J. G. Hou. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol. 10, 865-869(2015).

【28】W. Q. Zhao, H. Cui, L. R. Qiu and Y. Wang. Laser differential confocal mapping-spectrum microscopic imaging method and device. U.S. patent. (2015).

【29】B. Su and W. Jin. POCS-MPMAP based super-resolution image restoration. Acta Photon. Sin. 32, 502-504(2003).

【30】H. Cui, W. Zhao, Y. Wang, Y. Fan, L. Qiu and K. Zhu. Improving spatial resolution of confocal Raman microscopy by super-resolution image restoration. Opt. Express. 24, 10767-10776(2016).

【31】V. T. Srikar, A. K. Swan, M. S. Unlu, B. B. Goldberg and S. M. Spearing. Micro-Raman measurement of bending stresses in micromachined silicon flexures. J. Microelectromech. Syst. 12, 779-787(2003).

【32】F. Ure?a, S. H. Olsen and J. P. Raskin. Raman measurements of uniaxial strain in silicon nanostructures. J. Appl. Phys. 114, (2013).

【33】E. Anastassakis, A. Cantarero and M. Cardona. Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B. 41, 7529-7535(1990).

【34】W. A. BrantleyW. A. Brantley. Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44, 534-535(1973).

引用该论文

Han Cui, Yun Wang, Lirong Qiu, Shucheng Li, Jonathan M. Cooper, and Weiqian Zhao, "Synchronous nanoscale topographic and chemical mapping by differential-confocal controlled Raman microscopy," Photonics Research 8(9), 1441-1447 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF