首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1006002--1)

硒化镉量子点偶联羟基磷灰石荧光谱的温度特性

Temperature Characteristics of Fluorescence Spectra of Cadmium Selenide Quantum Dots Coupled with Hydroxyapatite

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了探究羟基磷灰石(HAP)纳米颗粒与硒化镉量子点(CdSe QD)的共轭物HAP-QD作为生物纳米温度探针的可能性,将CdSe QD与HAP纳米颗粒进行化学偶联,得到HAP-QD共轭物,并研究了HAP-QD荧光谱的温度特性。首先用硅烷偶联剂KH550对HAP表面进行氨基修饰;然后在偶联活化剂的作用下将表面修饰有羧基的CdSe QD与表面修饰有氨基的HAP进行共价偶联,得到HAP-QD共轭物;最后测量了298~318 K温度范围内CdSe QD和HAP-QD的荧光谱。实验结果表明,HAP-QD的荧光谱峰位随温度的升高会出现红移,且具有良好的线性关系。

Abstract

In order to study the possibility of the HAP-QD conjugate of hydroxyapatite (HAP) nanoparticles and cadmium selenide quantum dots (CdSe QD) as a biological nano-temperature probe, HAP nanoparticles are chemically coupled with CdSe QD to obtain HAP-QD conjugate, and further study the temperature characteristics of HAP-QD fluorescence spectrum. First, the surface of HAP is modified by silane coupling agent KH550. Then, under the action of coupling activator, the CdSe QD with a carboxyl group modified on the surface and HAP with an amino group modified on the surface are covalently coupled to obtain a HAP-QD conjugate. Finally, the fluorescence spectra of CdSe QD and HAP-QD are measured at the temperature range of 298--318 K. The experimental results show that the fluorescence peak position of HAP-QD demonstrates a redshift and has a good linear relationship with the increase of temperature.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.3788/CJL202047.1006002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、上海大学特种光纤与光接入网重点实验室开放项目、高等学校学科创新引智计划;

收稿日期:2020-04-13

修改稿日期:2020-05-22

网络出版日期:2013-10-01

作者单位    点击查看

陈振宜:特种光纤与光接入网重点实验室, 上海 200444上海先进通信与数据科学研究院, 上海 200444上海大学, 上海 200444
王锦添:特种光纤与光接入网重点实验室, 上海 200444上海大学, 上海 200444
陈娜:特种光纤与光接入网重点实验室, 上海 200444上海先进通信与数据科学研究院, 上海 200444上海大学, 上海 200444
刘书朋:特种光纤与光接入网重点实验室, 上海 200444上海大学, 上海 200444
王廷云:特种光纤与光接入网重点实验室, 上海 200444上海先进通信与数据科学研究院, 上海 200444上海大学, 上海 200444

联系人作者:陈娜(na.chen@shu.edu.cn)

备注:国家自然科学基金、上海大学特种光纤与光接入网重点实验室开放项目、高等学校学科创新引智计划;

【1】Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation [J]. Cell. 2011, 144(5): 646-674.Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation [J]. Cell. 2011, 144(5): 646-674.

【2】Monti M, Brandt L, Ikomi-Kumm J, et al. Microcalorimetric investigation of cell metabolism in tumour cells from patients with non-Hodgkin lymphoma (NHL) [J]. Scandinavian Journal of Haematology. 1986, 36(4): 353-357.Monti M, Brandt L, Ikomi-Kumm J, et al. Microcalorimetric investigation of cell metabolism in tumour cells from patients with non-Hodgkin lymphoma (NHL) [J]. Scandinavian Journal of Haematology. 1986, 36(4): 353-357.

【3】Vafai S B, Mootha V K. Mitochondrial disorders as windows into an ancient organelle [J]. Nature. 2012, 491(7424): 374-383.

【4】Lee J, Kotov N A. Thermometer design at the nanoscale [J]. Nano Today. 2007, 2(1): 48-51.

【5】Walker G W, Sundar V C, Rudzinski C M, et al. Quantum-dot optical temperature probes [J]. Applied Physics Letters. 2003, 83(17): 3555-3557.

【6】Cheng C, Deng X J. Photoluminescence lifetime of CdSxSe1-x/ZnS (core/shell) quantum dot [J]. Acta Optica Sinica. 2019, 39(8): 0830003.
程成, 邓徐俊. CdSxSe1-x/ZnS(核/壳)量子点的光致荧光寿命 [J]. 光学学报. 2019, 39(8): 0830003.

【7】Lin Y, Zhong Y, Liu H T. Modification of single photon fluorescence emission of single quantum dots with different substrates [J]. Chinese Journal of Lasers. 2018, 45(6): 0606005.
林雨, 钟莹, 刘海涛. 不同基片对单量子点单光子荧光发射的调控 [J]. 中国激光. 2018, 45(6): 0606005.

【8】Liu Z, Lin F Y, Gao M, et al. Effect of CdSe quantum dot sensitization on GaAs luminescence characteristics [J]. Chinese Journal of Lasers. 2019, 46(8): 0811002.
刘展, 林逢源, 高美, 等. CdSe量子点敏化对GaAs发光特性的影响 [J]. 中国激光. 2019, 46(8): 0811002.

【9】Li S, Zhang K, Yang J M, et al. Single quantum dots as local temperature markers [J]. Nano Letters. 2007, 7(10): 3102-3105.

【10】Maestro L M, Rodríguez E M, Rodríguez F S, et al. CdSe quantum dots for two-photon fluorescence thermal imaging [J]. Nano Letters. 2010, 10(12): 5109-5115.

【11】Yang J M, Yang H, Lin L W. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells [J]. ACS Nano. 2011, 5(6): 5067-5071.

【12】del Rosal B, Carrasco E, Ren F Q, et al. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback [J]. Advanced Functional Materials. 2016, 26(33): 6060-6068.

【13】Jiang X B, Li B Q, Qu X, et al. Thermal sensing with CdTe/CdS/ZnS quantum dots in human umbilical vein endothelial cells [J]. Journal of Materials Chemistry B. 2017, 5(45): 8983-8990.

【14】Derfus A M. Chan W C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots [J]. Nano Letters. 2004, 4(1): 11-18.

【15】Huang Y F, Qiu W W, Yu Z H, et al. Toxic effect of cadmium adsorbed by different sizes of nano-hydroxyapatite on the growth of rice seedlings [J]. Environmental Toxicology and Pharmacology. 2017, 52: 1-7.

【16】Choi S, Jeong Y. The removal of heavy metals in aqueous solution by hydroxyapatite/cellulose composite [J]. Fibers and Polymers. 2008, 9(3): 267-270.

【17】Foroughi M R, Zarei M. Synthesis of hydroxyapatite nanoparticles for the removal of Pb(II) and Cd(II) from industrial wastewaters [J]. Research on Chemical Intermediates. 2015, 41(6): 4009-4019.

【18】Li H Y, Guo X S, Ye X X. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: the role of surface area [J]. Journal of Environmental Sciences. 2017, 52: 141-150.

【19】Zhou R H, Li M, Wang S L, et al. Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging [J]. Nanoscale. 2014, 6(23): 14319-14325.

【20】Zeng S L, Zhou R H, Zheng X K, et al. Mono-dispersed Ba 2+-doped nano-hydroxyapatite conjugated with near-infrared Cu-doped CdS quantum dots for CT/fluorescence bimodal targeting cell imaging [J]. Microchemical Journal. 2017, 134: 41-48.

【21】Hails L A, Babister J C, Inglis S, et al. Inhibition of hydroxyapatite nanoparticle-induced osteogenic activity in skeletal cells by adsorption of serum proteins [J]. Small. 2010, 6(18): 1986-1991.

【22】Yang P P, Quan Z W, Li C X, et al. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier [J]. Biomaterials. 2008, 29(32): 4341-4347.

【23】Wu G J, Zhou L Z, Wang K W, et al. Hydroxylapatite nanorods: an efficient and promising carrier for gene transfection [J]. Journal of Colloid and Interface Science. 2010, 345(2): 427-432.

【24】Wei J C, Liu A X, Chen L, et al. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of γ-benzyl-L-glutamate N-carboxyanhydride [J]. Macromolecular Bioscience. 2009, 9(7): 631-638.

【25】Al Salman A, Tortschanoff A, Mohamed M B, et al. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods [J]. Applied Physics Letters. 2007, 90(9): 093104.

【26】Cheng C, Yan H Z. Bandgap of the core-shell CdSe/ZnS nanocrystal within the temperature range 300--373 K [J]. Physica E: Low-dimensional Systems and Nanostructures. 2009, 41(5): 828-832.

【27】Biju V, Makita Y, Sonoda A, et al. Temperature-sensitive photoluminescence of CdSe quantum dot clusters [J]. The Journal of Physical Chemistry. B. 2005, 109(29): 13899-13905.

【28】Dong L Y, Zhu Y J. A new kind of fireproof, flexible, inorganic, nanocomposite paper and its application to the protection layer in flame-retardant fiber-optic cables [J]. Chemistry-A European Journal. 2017, 23(19): 4597-4604.

【29】Lu B Q, Zhu Y J, Chen F. Highly flexible and nonflammable inorganic hydroxyapatite paper [J]. Chemistry-A European Journal. 2014, 20(5): 1242-1246.

引用该论文

Chen Zhenyi,Wang Jintian,Chen Na,Liu Shupeng,Wang Tingyun. Temperature Characteristics of Fluorescence Spectra of Cadmium Selenide Quantum Dots Coupled with Hydroxyapatite[J]. Chinese Journal of Lasers, 2020, 47(10): 1006002

陈振宜,王锦添,陈娜,刘书朋,王廷云. 硒化镉量子点偶联羟基磷灰石荧光谱的温度特性[J]. 中国激光, 2020, 47(10): 1006002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF