首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:232501--1)

基于光谱测量数据的自适应波段选择技术

Adaptive Band Selection Technique Based on Spectral Measurement Data

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光谱测量数据,综合考虑背景辐射和仪器噪声对目标探测的干扰,提出一种自适应波段选择方法,并进行实验验证。利用声光可调谐(AOTF)成像光谱仪采集光谱数据,光谱扫描波段为400~1000 nm。对天空背景下的无人机目标和墙面背景下的静态物体目标进行探测,计算各波长的综合信噪比,以综合信噪比最大值的70%为阈值,选择合适的工作波段。波段选择的结果符合实际情况,所提方法能有效地选择不同目标的最优探测波段。

Abstract

In this study, we propose an adaptive band selection method based on the spectral measurement data, considering the interference of background radiation and instrument noise on target detection. Further, an acousto-optic tunable filter imaging spectrometer is used to collect the spectral data with a spectral scanning band of 400-1000 nm. An unmanned aerial vehicle target and a static object are detected against a sky background and a wall background, respectively. The integrated signal-to-noise ratio of each wavelength is calculated to be 0.7 times the maximum value and is set as the threshold for selecting an appropriate working band. The band selection result is in accordance with the actual situation. The experimental results demonstrate that the proposed method can effectively select optimal detection bands for different targets.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.232501

所属栏目:光电子学

收稿日期:2019-05-15

修改稿日期:2019-05-23

网络出版日期:2019-12-01

作者单位    点击查看

周佳巧:中国科学院上海技术物理研究所智能红外感知重点实验室, 上海 200083中国科学院大学, 北京 100049上海科技大学, 上海 201210
崔文楠:中国科学院上海技术物理研究所智能红外感知重点实验室, 上海 200083
张涛:中国科学院上海技术物理研究所智能红外感知重点实验室, 上海 200083
黄夏阳:中国科学院上海技术物理研究所智能红外感知重点实验室, 上海 200083上海大学, 上海 200444
王周春:中国科学院上海技术物理研究所智能红外感知重点实验室, 上海 200083上海科技大学, 上海 201210

联系人作者:周佳巧(zhoujq1@shanghaitech.edu.cn); 崔文楠(cuiwennan@mail.sitp.ac.cn); 张涛(haozzh@sina.com);

【1】Zhou J Q, Cui W N, Zhang T. Adaptive detection system based on measurement data [J]. Infrared Technology. 2019, 41(2): 142-146.
周佳巧, 崔文楠, 张涛. 基于测量数据的自适应探测系统技术方法研究 [J]. 红外技术. 2019, 41(2): 142-146.

【2】Chien S, Sherwood R, Tran D, et al. Onboard autonomy on the Earth observing one mission . [C]∥AIAA 1st Intelligent Systems Technical Conference, September 20-22, 2004, Chicago, Illinois. USA: AIAA. 2004, 1-8.

【3】Vladimirova T, Yuhaniz S. An intelligent decision-making system for flood monitoring from space [J]. Soft Computing. 2011, 15(1): 13-24.

【4】Toth D, Aach T. Detection and recognition of moving objects using statistical motion detection and Fourier descriptors . [C]∥12th International Conference on Image Analysis and Processing, 2003.Proceedings., September 17-19, 2003, Mantova, Italy. New York: IEEE. 2003, 7839699.

【5】Kalluri H R, Prasad S, Bruce L M. Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification [J]. IEEE Transactions on Geoscience and Remote Sensing. 2010, 48(11): 4047-4058.

【6】Li Y Q, Li S Z, Jia Y. Application of spectral imaging technologies in detection and recognition of marine targets [J]. Optics & Optoelectronic Technology. 2015, 13(1): 79-86.
李越强, 李庶中, 贾宇. 光谱成像技术在海上目标探测识别中的应用探讨 [J]. 光学与光电技术. 2015, 13(1): 79-86.

【7】Yuan Z W, Huang S C, Xiong Z G, et al. Narrowband detection waveband selection for infrared warning satellites based on synthetic signal-to-noise ratio [J]. Laser & Optoelectronics Progress. 2016, 53(9): 090401.
苑智玮, 黄树彩, 熊志刚, 等. 基于综合信噪比的红外预警卫星窄带探测波段选择 [J]. 激光与光电子学进展. 2016, 53(9): 090401.

【8】Xu Y N, Li J W, Wu K F, et al. Detection band selection for mid-wave infrared spectrum using synthetic signal-to-noise ratio [J]. Infrared and Laser Engineering. 2014, 43(7): 2126-2131.
许元男, 李军伟, 吴开峰, 等. 采用综合信噪比的中波光谱探测波段选择 [J]. 红外与激光工程. 2014, 43(7): 2126-2131.

【9】Kwon H, Nasrabadi N M. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(2): 388-397.

【10】Dereniak E L, Hagen N A, Johnson W R, et al. Imaging spectropolarimetry [J]. Proceedings of SPIE. 2003, 5074: 272-285.

【11】Lü J G, Liang J Q, Liang Z Z, et al. Analysis of atmospheric disturbance on spectrum detection by spatial modulation Fourier transform spectrometer [J]. Acta Optica Sinica. 2018, 38(11): 1130003.
吕金光, 梁静秋, 梁中翥, 等. 空间调制傅里叶变换光谱仪光谱探测中的大气扰动分析 [J]. 光学学报. 2018, 38(11): 1130003.

【12】Zou Y P. Research of on-board data processing techniques for Fourier transform spectrometer [D]. Shanghai: University of Chinese Academy of Sciences. 2016.
邹曜璞. 星载傅里叶光谱仪星上数据处理研究 [D]. 上海: 中国科学院大学. 2016.

【13】Sun H B, Liu G S, Gu H, et al. Application of the fractional Fourier transform to moving target detection in airborne SAR [J]. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(4): 1416-1424.

【14】Chang L Y, Zhao B C, Qiu Y H, et al. Optical and mechanical design of imaging spectrometer based on acousto-optic tunable filter [J]. Journal of Applied Optics. 2010, 31(3): 345-349.
常凌颖, 赵葆常, 邱跃洪, 等. AOTF成像光谱仪光机系统设计 [J]. 应用光学. 2010, 31(3): 345-349.

引用该论文

Zhou Jiaqiao,Cui Wennan,Zhang Tao,Huang Xiayang,Wang Zhouchun. Adaptive Band Selection Technique Based on Spectral Measurement Data[J]. Laser & Optoelectronics Progress, 2019, 56(23): 232501

周佳巧,崔文楠,张涛,黄夏阳,王周春. 基于光谱测量数据的自适应波段选择技术[J]. 激光与光电子学进展, 2019, 56(23): 232501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF