首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:183101--1)

Spiro-OMeTAD层氧化增强钙钛矿太阳能电池性能优化

Property Optimization of Perovskite Solar Cells Enhanced by Spiro-OMeTAD Layer Oxidation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对钙钛矿太阳能电池中Spiro-OMeTAD层氧化不足或氧化过度而导致器件性能较低的问题,研究了空穴层Spiro-OMeTAD氧化对器件光电性能的影响。采用4种不同的方式对空穴层进行氧化,对氧化前后空穴层薄膜的光电性能进行研究,以确定最佳的氧化方式及条件。制备了结构为ITO/SnO2/CH3NH3PbI3/Spiro-OMeTAD/Ag的平面型器件,对氧化前后器件的光电性能进行表征及对比分析。结果表明:有效的氧化方式可减少Spiro-OMeTAD膜表面的针孔,使Spiro-OMeTAD膜层更加致密,提高钙钛矿太阳能电池的填充因子;氧化处理同时也降低了Spiro-OMeTAD膜层对光的寄生吸收,提升了钙钛矿太阳能电池的有效光学吸收率。此外,氧气氧化Spiro-OMeTAD前驱液的方式,优于其他三种氧化方式,由此得到的器件相比于空气氧化器件,正扫模式下填充因子由0.43增加至0.63,光电转化效率由9.06%提升至14.19%。

Abstract

Insufficient or excessive oxidation of the Spiro-OMeTAD layer can lead to a low efficiency of the perovskite solar cell. The effect of the hole transporting layer on Spiro-OMeTAD oxidation is investigated to solve such problem. Four different methods are primarily utilized to oxidize the hole transporting layers. Then, the optoelectrical performances of the hole transporting layers before and after oxidation are studied to determine the optimum oxidation method and its conditions. Subsequently, planar devices with a ITO/SnO2/CH3NH3PbI3/Spiro-OMeTAD/Ag structure are fabricated. The photoelectric properties are characterized and compared before and after oxidizing the devices. The result shows that an efficient oxidation decreases the pinholes on the surface of the Spiro-OMeTAD layer and makes it fully dense. Thus, the fill factor (FF) of the perovskite solar cell is increased. Furthermore, the oxidation treatment reduces the parasite absorption of light by the Spiro-OMeTAD layer and improves the effective optical absorptance of the perovskite solar cell. In addition, the oxygen oxidation in the Spiro-OMeTAD precursor is apparently superior to the other oxidation modes. Compared with the air-oxidized device, the FF of the oxygen-oxidized device rises from 0.43 to 0.63, and the photon conversion efficiency increases from 9.06% to 14.19% under the optimum operating conditions.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.183101

所属栏目:薄膜

基金项目:国家自然科学基金;

收稿日期:2019-01-11

修改稿日期:2019-04-01

网络出版日期:2019-09-01

作者单位    点击查看

蒙镜蓉:宁夏大学光伏材料重点实验室, 宁夏 银川 750021
李国龙:宁夏大学光伏材料重点实验室, 宁夏 银川 750021
索鑫磊:宁夏大学光伏材料重点实验室, 宁夏 银川 750021
张立来:宁夏大学光伏材料重点实验室, 宁夏 银川 750021
苏杭:宁夏大学光伏材料重点实验室, 宁夏 银川 750021
李婉:宁夏大学光伏材料重点实验室, 宁夏 银川 750021
王浩:宁夏巨源新材料科技有限公司, 宁夏 银川 750021

联系人作者:蒙镜蓉(mengjingrong111@163.com); 李国龙( liglo@163.com);

备注:国家自然科学基金;

【1】Stranks S D, Eperon G E, Grancini G et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 342(6156), 341-344(2013).

【2】Park N G, Gr?tzel M, Miyasaka T et al. Towards stable and commercially available perovskite solar cells. Nature Energy. 1(11), (2016).

【3】Wang Z P, Lin Q Q, Chmiel F P et al. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy. 2(9), (2017).

【4】Huo C X, Wang Z M, Li X M et al. Low-dimensional metal halide perovskites: a kind of microcavity laser materials. Chinese Journal of Lasers. 44(7), (2017).
霍成学, 王子明, 李晓明 等. 低维金属卤化物钙钛矿: 一种微腔激光材料. 中国激光. 44(7), (2017).

【5】Liu Y Z and Cui Y X. MAPbI3 perovskite nanowire photodetectors. Laser & Optoelectronics Progress. 55(10), (2018).
刘艳珍, 崔艳霞. MAPbI3钙钛矿纳米线光电探测器. 激光与光电子学进展. 55(10), (2018).

【6】Liu Y Z, Li G H, Cui Y X et al. Research progress in perovskite photodetectors. Laser & Optoelectronics Progress. 56(1), (2019).
刘艳珍, 李国辉, 崔艳霞 等. 钙钛矿光电探测器的研究进展. 激光与光电子学进展. 56(1), (2019).

【7】Burschka J, Dualeh A, Kessler F et al. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(Ⅲ) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society. 133(45), 18042-18045(2011).

【8】Abate A, Hollman D J, Teuscher J et al. Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. Journal of the American Chemical Society. 135(36), 13538-13548(2013).

【9】Kim H S, Lee C R, Im J H et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports. 2, (2012).

【10】Leijtens T, Lim J, Teuscher J et al. Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells. Advanced Materials. 25(23), 3227-3233(2013).

【11】Leijtens T, Eperon G E, Noel N K et al. Stability of metal halide perovskite solar cells. Advanced Energy Materials. 5(20), (2015).

【12】Cappel U B, Daeneke T and Bach U. Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance. Nano Letters. 12(9), 4925-4931(2012).

【13】Mei A, Li X, Liu L et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science. 345(6194), 295-298(2014).

【14】Fielding A J, Kovaleva E G, Farquhar E R et al. A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase. Journal of Biological Inorganic Chemistry. 16(2), 341-355(2011).

【15】Lewandowska A, Hug G L, H?rner G et al. Efficient photochemical oxidation of anisole in protic solvents: electron transfer driven by specific solvent-solute interactions. European Journal of Chemical Physics and Physical Chemistry. 11(10), 2108-2117(2010).

【16】Abate A, Leijtens T, Pathak S et al. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics. 15(7), 2572-2579(2013).

【17】Hawash Z, Ono L K, Raga S R et al. Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chemistry of Materials. 27(2), 562-569(2015).

【18】Hawash Z, Ono L K and Qi Y B. Photovoltaics: moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells. Advanced Materials Interfaces. 3(13), (2016).

【19】Sch?lin R, Karlsson M H, Eriksson S K et al. Energy level shifts in spiro-OMeTAD molecular thin films when adding Li-TFSI. The Journal of Physical Chemistry C. 116(50), 26300-26305(2012).

【20】Li X, Zhao Y H, Peng H et al. Solar cells with surface modified Cs-doped ZnO nanorod array as electron transporting layer. Acta Optica Sinica. 38(7), (2018).
李雪, 赵宇涵, 彭辉 等. 以表面修饰铯掺杂ZnO纳米柱阵列为电子传输层的太阳能电池. 光学学报. 38(7), (2018).

【21】Chen Q, Marco N D, Yang Y et al. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today. 10(3), 355-396(2015).

【22】Li Z C, Liu B, Zhang R et al. Design and fabrication of SiO2/Si3N4 dielectric distributed Bragg reflectors for ultraviolet optoelectronic applications. Acta Physica Sinica. 61(8), (2012).
李志成, 刘斌, 张荣 等. 紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜的制备与研究. 物理学报. 61(8), (2012).

【23】Calvert P. Inkjet printing for materials and devices. Chemistry of Materials. 13(10), 3299-3305(2001).

【24】Veinot J G C and Marks T J. Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers. ACS of Chemical Research. 36(44), 632-643(2005).

【25】Jolt Oostra A. Blom P W M, Michels J J. Prevention of short circuits in solution-processed OLED devices. Organic Electronics. 15(6), 1166-1172(2014).

【26】Pettersson L A A, Roman L S and Ingan?s O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics. 86(1), 487-496(1999).

【27】Snaith H J and Gr?tzel M. Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: implication to dye-sensitized solar cells. Applied Physics Letters. 89(26), (2006).

引用该论文

Jingrong Meng,Guolong Li,Xinlei Suo,Lilai Zhang,Hang Su,Wan Li,Hao Wang. Property Optimization of Perovskite Solar Cells Enhanced by Spiro-OMeTAD Layer Oxidation[J]. Laser & Optoelectronics Progress, 2019, 56(18): 183101

蒙镜蓉,李国龙,索鑫磊,张立来,苏杭,李婉,王浩. Spiro-OMeTAD层氧化增强钙钛矿太阳能电池性能优化[J]. 激光与光电子学进展, 2019, 56(18): 183101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF