首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221105--1)

面向SAR图像像素级变化检测的去模糊化处理方法

Deblurring Processing Method for Pixel Level Change Detection of SAR Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对合成孔径雷达(synthetic aperture radar, SAR)图像变化检测中存在的差异图细节信息丢失的问题,提出了一种面向SAR图像像素级变化检测的去模糊化处理方法。通过对差异图漏检像素点分布的理论分析,提出了一种新型的差异图构造方法,将新型差异图构造方法生成的差异图与经典的像素级差异图构造算法生成的差异图相融合,实现了差异图的边缘去模糊化。以均值比值算法为例,实验结果表明,新型差异图构造方法得到的差异信息与邻域变化检测算法得到的差异信息具有较强的互补性;利用新型差异图构造方法进行去模糊化处理后,得到的差异图在主观上更接近真实地物的变化情况,在客观上变化检测结果的漏检数降低,变化检测的精度有所提高。

Abstract

In order to solve the problem about the loss of detail information of difference maps in the change detection of synthetic aperture radar (SAR) images, a deblurring processing method for the pixel level change detection of SAR images is proposed. Based on the theoretical analysis of the distribution of pixels missed from the difference map, a new method for constructing the difference map is proposed. The difference map generated by this proposed algorithm is fused with the difference map generated by the classical pixel-level change detection algorithm to realize the edge deblurring of the difference map. Taking the average ratio algorithm as an example, the experimental results show that the difference information obtained by the proposed algorithm and that by the neighborhood change detection algorithm are highly complementary. The difference map generated from deblurring by the proposed algorithm is subjectively closer to the change of the real ground object. Objectively, the numbers of the missed points of change detection results are reduced, and the accuracy of change detection is improved.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP751

DOI:10.3788/LOP57.221105

所属栏目:成像系统

基金项目:山西省研究生教育创新项目、中北大学研究生科技基金资助课题、山西省研究生教育创新项目;

收稿日期:2020-02-27

修改稿日期:2020-04-23

网络出版日期:2020-11-01

作者单位    点击查看

高敏:中北大学信息与通信工程学院, 山西 太原 030051
王肖霞:中北大学信息与通信工程学院, 山西 太原 030051
杨风暴:中北大学信息与通信工程学院, 山西 太原 030051
张宗军:中北大学信息与通信工程学院, 山西 太原 030051

联系人作者:王肖霞(574978473@qq.com)

备注:山西省研究生教育创新项目、中北大学研究生科技基金资助课题、山西省研究生教育创新项目;

【1】Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery [J]. Geomatics and Information Science of Wuhan University. 2018, 43(12): 1885-1898.
眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述 [J]. 武汉大学学报(信息科学版). 2018, 43(12): 1885-1898.
Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery [J]. Geomatics and Information Science of Wuhan University. 2018, 43(12): 1885-1898.
眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述 [J]. 武汉大学学报(信息科学版). 2018, 43(12): 1885-1898.

【2】Huang C X, Yin J J, Yang J. Polarimetric SAR change detection with l1-norm principal component analysis [J]. Systems Engineering and Electronics. 2019, 41(10): 2214-2220.
黄晨霞, 殷君君, 杨健. 基于l1范数主成分分析的极化SAR图像变化检测 [J]. 系统工程与电子技术. 2019, 41(10): 2214-2220.

【3】Jin Q H, Wang Y P, Yang J Y. Remote sensing image change detection based on density attraction and multi-scale and multi-feature fusion [J]. Laser & Optoelectronics Progress. 2019, 56(12): 121003.
金秋含, 王阳萍, 杨景玉. 基于密度引力和多尺度多特征融合的遥感影像变化检测 [J]. 激光与光电子学进展. 2019, 56(12): 121003.

【4】Baik H, Son Y, Kim K. Detection of liquefaction phenomena from the 2017 Pohang (Korea) earthquake using remote sensing data [J]. Remote Sensing. 2019, 11(18): 2184.

【5】Perbet P, Fortin M, Ville A, et al. Near real-time deforestation detection in Malaysia and Indonesia using change vector analysis with three sensors [J]. International Journal of Remote Sensing. 2019, 40(19): 7439-7458.

【6】Shimizu K, Ota T, Mizoue N. Detecting forest changes using dense landsat 8 and sentinel-1 time series data in tropical seasonal forests [J]. Remote Sensing. 2019, 11(16): 1899.

【7】Zhang Q Y, Li Z, Peng D L. Detecting land use change by object-oriented change vector analysis (OCVA) [J]. Journal of China Agricultural University. 2019, 24(6): 166-174.
张沁雨, 李哲, 彭道黎. 利用面向对象变化向量分析(OCVA)检测土地利用变化 [J]. 中国农业大学学报. 2019, 24(6): 166-174.

【8】Wu Y Q, Cao Z Q, Tao F X. Change detection of multi-temporal remote sensing images based on Contourlet transform and ICA [J]. Chinese Journal of Geophysics. 2016, 59(4): 1284-1292.
吴一全, 曹照清, 陶飞翔. 基于Contourlet变换和ICA的多时相遥感图像变化检测 [J]. 地球物理学报. 2016, 59(4): 1284-1292.

【9】Wang S N, Jiao L C, Yang S Y. SAR images change detection based on spatial coding and nonlocal similarity pooling [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016, 9(8): 3452-3466.

【10】Inglada J, Mercier G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2007, 45(5): 1432-1445.

【11】Gong M G, Cao Y, Wu Q D. A neighborhood-based ratio approach for change detection in SAR images [J]. IEEE Geoscience and Remote Sensing Letters. 2012, 9(2): 307-311.

【12】Ma J J, Gong M G, Zhou Z Q. Wavelet fusion on ratio images for change detection in SAR images [J]. IEEE Geoscience and Remote Sensing Letters. 2012, 9(6): 1122-1126.

【13】Su Q, Yang J Y, Wang Y P. Synthetic aperture radar image change detection based on intuitionistic fuzzy C-core mean clustering algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(19): 192805.
宿强, 杨景玉, 王阳萍. 基于直觉模糊C核均值聚类算法的合成孔径雷达图像变化检测 [J]. 激光与光电子学进展. 2019, 56(19): 192805.

【14】Mu C H, Huo L L, Liu Y, et al. Change detection for remote sensing images based on wavelet fusion and PCA-kernel fuzzy clustering [J]. Acta Electronica Sinica. 2015, 43(7): 1375-1381.
慕彩红, 霍利利, 刘逸, 等. 基于小波融合和PCA-核模糊聚类的遥感图像变化检测 [J]. 电子学报. 2015, 43(7): 1375-1381.

【15】Zhang Q C, Tong G F, Li Y, et al. River detection in remote sensing images based on multi-feature fusion and soft voting [J]. Acta Optica Sinica. 2018, 38(6): 0628002.
张庆春, 佟国峰, 李勇, 等. 基于多特征融合和软投票的遥感图像河流检测 [J]. 光学学报. 2018, 38(6): 0628002.

【16】Zhao Z G, Xiong C H, Wang K, et al. Conceptions, methods and applications on information fusion[M]. Beijing: National Defense Industry Press, 2012, 283.
赵宗贵, 熊朝华, 王珂, 等. 信息融合概念、方法与应用[M]. 北京: 国防工业出版社, 2012, 283.

引用该论文

Gao Min,Wang Xiaoxia,Yang Fengbao,Zhang Zongjun. Deblurring Processing Method for Pixel Level Change Detection of SAR Images[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221105

高敏,王肖霞,杨风暴,张宗军. 面向SAR图像像素级变化检测的去模糊化处理方法[J]. 激光与光电子学进展, 2020, 57(22): 221105

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF