首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1010004--1)

基于光纤布拉格光栅传感器的光电复合缆绳应变测量

Strain Measurement of Photoelectric Composite Cable Based on Fiber Bragg Grating Sensor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光电复合缆绳是系留无人机的生命线,可以起到电力传输和信号传输的作用。当缆绳内部张力过大时,内部光纤会出现断裂情况,为了掌握缆绳内部的张力分布,需对缆绳的应变进行测量。使用光纤布拉格光栅传感器测量复合缆绳的轴向应变时发现,细长复合缆绳的大幅快速运动容易引起缆绳的局部弯曲,导致反射谱的反射峰出现分裂现象。基于材料力学理论分析了复合缆绳弯曲时反射峰发生分裂的原因,通过实验对理论分析结果进行了验证,并提出了一种改进的测量方法,避免了粘胶和缆绳内部剪力对测量结果的影响,有效提高了轴向应变测量的准确性。

Abstract

Photoelectric composite cable is the lifeline of tethered unmanned aerial vehicle, which transmits power and signal. When the internal tension of the cable is too large, the internal optical fiber will break. In order to monitor the tension distribution inside the cable, it is necessary to measure the strain of the cable. When fiber Bragg grating sensor is used to measure the axial strain of the composite cable, it is found that the large-scale and rapid movement of the slender composite cable will easily cause the local bending of the cable, resulting in the splitting of the reflection peak of the reflection spectrum. Based on the theory of mechanics of materials, the reason why the reflection peak splits during the bending of composite cable is analyzed. The theoretical analysis result is verified by experimental, and an improved measurement method is proposed, which avoids the influence of viscose and internal shear force of cable on the measurement result, and effectively improves the accuracy of axial strain measurement.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.1010004

所属栏目:遥感与传感器

基金项目:国家自然科学基金、天津市自然科学基金、装备预研基金重点项目;

收稿日期:2019-12-04

修改稿日期:2020-05-28

网络出版日期:2020-10-01

作者单位    点击查看

陶冶:天津大学机械工程学院力学系, 天津 300354天津市非线性动力学与混沌控制重点实验室, 天津 300354
张素侠:天津大学机械工程学院力学系, 天津 300354天津市非线性动力学与混沌控制重点实验室, 天津 300354

联系人作者:张素侠(zhangsux@tju.edu.cn)

备注:国家自然科学基金、天津市自然科学基金、装备预研基金重点项目;

【1】Zhang S X, Tang Y G, Liu X J. Experimental investigation of nonlinear dynamic tension in mooring lines [J]. Journal of Marine Science and Technology. 2012, 17(2): 181-186.

【2】Pang X R, Wang D P. Oblique crack monitoring of concrete beam with macro FBG strain sensor [J]. Laser & Optoelectronics Progress. 2017, 54(12): 120603.
庞香润, 王大鹏. FBG宏应变传感器的混凝土梁斜裂缝监测 [J]. 激光与光电子学进展. 2017, 54(12): 120603.

【3】Wang Y H, Zhang M Y, Ma J X, et al. Measurements of penetration characteristics of jacked piles in clayey soil based on fiber Bragg gratings [J]. Acta Optica Sinica. 2020, 40(7): 0706004.
王永洪, 张明义, 马加骁, 等. 光纤布拉格光栅用于黏质土中静压沉桩贯入特性的测量研究 [J]. 光学学报. 2020, 40(7): 0706004.

【4】Jiang L, Zhang X Z, Wang J, et al. Real-time online detection of cutter wear based on fiber Bragg grating array [J]. Acta Optica Sinica. 2019, 39(12): 1206003.
蒋磊, 张学智, 王进, 等. 基于光纤布拉格光栅阵列的刀头磨损实时在线检测 [J]. 光学学报. 2019, 39(12): 1206003.

【5】Gafsi R. El-Sherif M A. Analysis of induced-birefringence effects on fiber Bragg gratings [J]. Optical Fiber Technology. 2000, 6(3): 299-323.Gafsi R. El-Sherif M A. Analysis of induced-birefringence effects on fiber Bragg gratings [J]. Optical Fiber Technology. 2000, 6(3): 299-323.

【6】Wu F, Li L X, Li Z Q. Theoretical analysis of fiber Bragg grating characterization by applying transverse force [J]. Chinese Journal of Lasers. 2006, 33(4): 472-476.
吴飞, 李立新, 李志全. 均匀光纤布拉格光栅横向受力特性的理论分析 [J]. 中国激光. 2006, 33(4): 472-476.

【7】Zhou H C, Huang F, Xie J H. Simulation research on reflection spectrum of FBG under transverse force [J]. Journal of University of Science and Technology of Suzhou (Natural Science). 2009, 26(3): 64-67.
周恒超, 黄富, 谢军华. FBG横向受力反射谱的仿真研究 [J]. 苏州科技学院学报(自然科学版). 2009, 26(3): 64-67.

【8】Wu J, Shu Y J, Fu Z F. Analysis of sensing performance influence of implanted FBG sensor in anchor head under asymmetric transverse force Instrument Technique and Sensor[J]. 0, 2019(7): 11-14, 18.
吴俊, 舒岳阶, 傅志芳. 锚头内部非对称横向作用力对植入式FBG传感器传感性能的影响分析 仪表技术与传感器[J]. 0, 2019(7): 11-14, 18.

【9】Zhou J L, Dong X P, Shi Z D. Theoretical and experimental investigation of the bending sensitivity of the D-shaped fiber Bragg gratings [J]. Acta Photonica Sinica. 2006, 35(11): 1734-1737.
周金龙, 董小鹏, 石志东. D形光纤Bragg光栅弯曲灵敏度的理论和实验研究 [J]. 光子学报. 2006, 35(11): 1734-1737.

【10】Wang H L, Qiao X G, Zhou H, et al. Influence of stress birefringence on the performance of a FBG pressure sensor [J]. Optoelectronics Letters. 2005, 1(2): 103-106.

【11】Wang Q Y, Li Q H, Guo B X, et al. Effect of lateral force on reflected polarization dependent loss property of low-birefringence fiber Bragg gratings [J]. Chinese Journal of Lasers. 2012, 39(3): 0305003.
王启宇, 励强华, 郭炳霞, 等. 横向压力对弱双折射光纤光栅偏振相关损耗特性的影响 [J]. 中国激光. 2012, 39(3): 0305003.

【12】Su Y, Zhu Y, Zhang B F, et al. Spectral characterization of polarization dependent loss in fiber Bragg grating under local pressure and the analysis of secondary peak [J]. Optical Fiber Technology. 2015, 24: 77-83.

【13】Zhang W, Chen W M, Shu Y J, et al. Effects of bonding layer on the available strain measuring range of fiber Bragg gratings [J]. Applied Optics. 2014, 53(5): 885-891.

【14】Shlyagin M G, Khomenko A V, Tentori D. Birefringence dispersion measurement in optical fibers by wavelength scanning [J]. Optics Letters. 1995, 20(8): 869-871.

【15】Li Z H, Meng Z, Chen X J, et al. Method for improving the resolution and accuracy against birefringence dispersion in distributed polarization cross-talk measurements [J]. Optics Letters. 2012, 37(14): 2775-2777.

【16】Tang F, Wang X Z, Zhang Y M, et al. Distributed measurement of birefringence dispersion in polarization-maintaining fibers [J]. Optics Letters. 2006, 31(23): 3411-3413.

【17】Xu T H, Jing W C, Zhang H X, et al. Influence of birefringence dispersion on a distributed stress sensor using birefringent optical fiber [J]. Optical Fiber Technology. 2009, 15(1): 83-89.

【18】Liu F, Ye Q, Zhou Y W, et al. Influence of polarization mode dispersion and group time delay ripple on dispersion compensation by chirped fiber grating [J]. Chinese Journal of Lasers. 2005, 32(5): 668-672.
刘峰, 叶青, 周赢武, 等. 偏振模色散和时延抖动对啁啾光纤光栅色散补偿特性的影响 [J]. 中国激光. 2005, 32(5): 668-672.

【19】Fu Y J, Liu Y, Tan Z W, et al. Polarization mode dispersion in fiber Bragg gratings [J]. Semiconductor Optoelectronics. 2003, 24(1): 25-28.
傅永军, 刘艳, 谭中伟, 等. 光纤光栅偏振模色散研究 [J]. 半导体光电. 2003, 24(1): 25-28.

【20】Wang T Y, Lu Q Z. Study on bending birefringence of single mode fiber [J]. Optoelecfronic Technology. 1997, 17(1): 50-53.
王廷云, 卢启柱. 单模光纤弯曲双折射的研究 [J]. 光电子技术. 1997, 17(1): 50-53.

【21】Chen C, Li D G, Liu Z S. Calculation of FBG''''s reflectivity and phase response [J]. Journal of Naval University of Engineering. 2001, 13(3): 64-66, 79.
陈聪, 李定国, 刘照世. 光纤光栅反射率及相位响应的计算 [J]. 海军工程大学学报. 2001, 13(3): 64-66, 79.

【22】Francois M, Davies P, Grosjean F, et al. Modelling fiber rope load-elongation properties-polyester and other fibers . [C]∥Offshore Technology Conference, May 3-6, 2010, Houston, Texas, USA. Houston: OTC. 2010, 2430-2441.

【23】Lin C X, Huang W, Liu H X. Stress-strain relationship of synthetic fiber mooring lines under cyclic loading [J]. The Ocean Engineering. 2012, 30(3): 97-104.
林诚鑫, 黄维, 刘海笑. 循环荷载作用下合成纤维系缆粘弹塑性应力应变关系 [J]. 海洋工程. 2012, 30(3): 97-104.

引用该论文

Tao Ye,Zhang Suxia. Strain Measurement of Photoelectric Composite Cable Based on Fiber Bragg Grating Sensor[J]. Chinese Journal of Lasers, 2020, 47(10): 1010004

陶冶,张素侠. 基于光纤布拉格光栅传感器的光电复合缆绳应变测量[J]. 中国激光, 2020, 47(10): 1010004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF