首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:150601--1)

基于双相移光纤光栅的光电多频振荡生成及温度不敏感传感解调方法

Temperature-Insensitive Method for Interrogating Fiber Grating Sensor Using Dual Phase-Shifted Fiber Grating and Optoelectronic Oscillator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于双相移光纤光栅和光电振荡器的传感解调方法。该方法融合了光纤光栅传感技术与微波光子技术,其中光纤光栅同时作为传感探头及光电振荡器中的微波光子滤波器组成单元,当外界待测量改变光栅特性时,光电振荡器产生的微波频率也将随之改变,且环境温度变化并不会对微波频率造成影响,有效避免了交叉敏感。同时,阐述了通过光电振荡结构将光栅波长变化转换到微波域进行解调的方案及优点,进而得到了实验搭建的基于此光栅的双通带微波光子滤波器测试结果,构造了基于双通带微波光子滤波器的光电振荡环,实验结果表明,该系统的传感解调灵敏度约为36 MHz/με。所提方法为光纤光栅传感的高速、高分辨率解调提供了新思路,推动了光纤传感的实用化进展。

Abstract

Herein, we propose a method for interrogating a fiber grating sensor using a dual-phase-shifted fiber grating and an optoelectronic oscillator (OEO). Combining the advantages of fiber grating sensing technology and microwave photonic technology, fiber gratings in a system serve both as sensing probes and as filtering units in a microwave photonic filter of the OEO. When the measurand changes the features of the sensing fiber grating, the frequency produced by the OEO also changes. This is not influenced by varying environmental temperatures, thus avoiding the cross-sensitivity problem of fiber grating sensors. Through the OEO, the wavelength change of the grating is reflected as a corresponding change in the microwave frequency. Furthermore, we experimentally demonstrate such a dual-passband microwave photonic filter using the phase-shifted fiber grating and construct an OEO ring based on the filter. Our experimental results show that the proposed system can provide an interrogation sensitivity of about 36 MHz/με. The implementation of this device holds promise for the development of a novel method of interrogating fiber grating sensors to achieve high-resolution and high-speed measurements. The proposed method can also help promote further developments in practical applications of optical fiber sensing technology.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.150601

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(6157010584)、广东省自然科学基金(2017A030310071);

收稿日期:2018-12-10

修改稿日期:2019-03-05

网络出版日期:2019-08-01

作者单位    点击查看

许鸥:广东工业大学信息工程学院, 广东 广州 510006
符瑕珊:广东工业大学信息工程学院, 广东 广州 510006

联系人作者:许鸥(xuou@gdut.edu.cn)

备注:国家自然科学基金(6157010584)、广东省自然科学基金(2017A030310071);

【1】Kinet D, Mégret P, Goossen K W et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions. Sensors. 14(4), 7394-7419(2014).

【2】Mei J W, Xiao X S and Yang C X. Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers. IEEE Photonics Technology Letters. 27(15), 1585-1588(2015).

【3】Qiao X G, Ding F, Jia Z A et al. High-accuracy quasi-distributed optical fiber Bragg grating seismic demodulation system. Acta Physica Sinica. 60(7), (2011).
乔学光, 丁锋, 贾振安 等. 高精度准分布式光纤光栅地震检波解调系统的研究. 物理学报. 60(7), (2011).

【4】Wu Q, Okabe Y and Sun J Q. Investigation of dynamic properties of erbium fiber laser for ultrasonic sensing. Optics Express. 22(7), 8405-8419(2014).

【5】Jiang X X. Rotating blade''s dynamic strain distributed measurement and vibration estimation research based on FBG. Wuhan: Wuhan University of Technology. 15-19(2014).
蒋熙馨. 旋转叶片动应变FBG分布式检测及振动估计研究. 武汉: 武汉理工大学. 15-19(2014).

【6】Guan B O, Jin L, Zhang Y et al. Polarimetric heterodyning fiber grating laser sensors. Journal of Lightwave Technology. 30(8), 1097-1112(2012).

【7】Gao L, Liu S C, Yin Z W et al. Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques. IEEE Photonics Technology Letters. 23(1), 18-20(2011).

【8】Wang Y P, Zhang J J, Coutinho O et al. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform. Optics Letters. 40(21), 4923-4926(2015).

【9】Wang C and Yao J P. Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy. Journal of Lightwave Technology. 29(19), 2927-2933(2011).

【10】Liu W L, Li M, Wang C et al. Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio. Journal of Lightwave Technology. 29(9), 1239-1247(2011).

【11】Fu H Y, Zhang W, Mou C B et al. High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering. IEEE Photonics Technology Letters. 21(8), 519-521(2009).

【12】Yao J P. Microwave photonics for high resolution and high speed interrogation of fiber Bragg grating sensors. Fiber and Integrated Optics. 34(4), 204-216(2015).

【13】Yao J P. Optoelectronic oscillators for high speed and high resolution optical sensing. Journal of Lightwave Technology. 35(16), 3489-3497(2017).

【14】Bao W Q, Yu J L and Wang W R. High-rate optical sampling based on optoelectronic oscillator. Laser & Optoelectronics Progress. 55(6), (2018).
包文强, 于晋龙, 王文睿. 基于光电振荡器的高速率光采样技术. 激光与光电子学进展. 55(6), (2018).

【15】Xu O, Zhang J J, Deng H et al. Dual-frequency optoelectronic oscillator for thermal-insensitive interrogation of a FBG strain sensor. IEEE Photonics Technology Letters. 29(4), 357-360(2017).

【16】Li W Z, Li M and Yao J P. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques. 60(5), 1287-1296(2012).

【17】Xu O, Han Y S and Lu S H. A reconfigurable microwave photonic filter based on a phase-shifted FBG of two phase shifts. [C]∥2017 International Topical Meeting on Microwave Photonics (MWP), October 23-26, 2017, Beijing, China. New York: IEEE. 17398271, (2017).

引用该论文

Xu Ou,Fu Xiashan. Temperature-Insensitive Method for Interrogating Fiber Grating Sensor Using Dual Phase-Shifted Fiber Grating and Optoelectronic Oscillator[J]. Laser & Optoelectronics Progress, 2019, 56(15): 150601

许鸥,符瑕珊. 基于双相移光纤光栅的光电多频振荡生成及温度不敏感传感解调方法[J]. 激光与光电子学进展, 2019, 56(15): 150601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF