首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1006006--1)

基于光纤环形激光器的动态应变传感系统

Dynamic Strain Sensing System Based on Fiber Ring Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来,测量应变[1-4]、变形[5-6]和温度[7-8]等物理量在机械、航空和民用器械等结构健康监测(SHM)领域有着非常重要的意义[9-12]。在这些测量中最常见的是对动态应变的测量,这使得高灵敏度动态应变传感器在近年来备受关注。光纤光栅有许多方面的应用,在早期主要应用于工程结构健康监测领域,同时也在多光栅的复用方面有所应用[13]。光纤布拉格光栅(FBG)是一种反射式光纤光栅,从光栅处反射的布拉格波长对温度、应变和压力这些外界因素较为敏感。FBG传感器由于具有体积小、成本低、结构简单、抗电磁干扰、可实现准分布式测量等优点而被广泛应用于桥梁、航空航天、深海石油平台和土木结构等领域,有极大的商业价值[14]。与其他传感器相比,FBG传感器的这些优势使其在现代社会的发展中占据极其重要的地位。Tsai等[15]提出一种高精度和高采样率的自由光谱范围匹配解调仪,此系统配备可调谐光纤法布里-珀罗(FFP)滤波器和多通道的光纤带通滤波器(BPF),此FFP滤波器的自由光谱范围与BPF中每一个通道光谱范围匹配,使得FFP滤波器和光纤系统具有很好的兼容性。Han等[16]提出一种用于声发射检测的光纤超声波传感器系统,其光纤激光腔采用窄带的可调谐光学BPF和一个传感FBG,掺铒光纤作为增益媒介。重庆理工大学的陶传义等[17]提出一种能实时识别外来撞击声发射信号的被动结构健康监测系统,此系统基于半导体光放大器的FBG传感系统监测高频动态应变信号(包括超声信号),将动态应变信号引起的光栅反射谱波长移动转化为相位变化,并被迈克耳孙干涉仪解调。在迈克耳孙干涉解调仪中,使用比例积分微分控制器补偿由温度和大的准静态应变引起的低频漂移,同时对光程差和布拉格光栅光谱线宽等参量进行分析和优化。利用该解调系统可对金属板受到撞击时激发的声发射进行感测,获取的动态应变信号频率高达197 kHz。现代光纤光栅传感器的多路复用技术从根本上优化了传统的复杂传感器系统。用于实现分布式测量的准分布式光纤传感器不仅可以从各种测量领域中提取信息,还可以解决当前测量领域的许多复杂问题。因此,FBG作为温度和应变传感器一直在被积极研究,以期通过光波的多路复用技术来实现多点测量[18]。

Abstract

This study presents a dynamic strain sensor system based on the fiber ring laser containing a semiconductor optical amplifier. In this sensing system, the semiconductor optical amplifier based fiber ring laser in combination with a fiber Bragg grating is used as a wavelength selecting component of the fiber laser to detect the external dynamic strain signal. A non-tunable fiber Fabry-Pérot filter is deployed outside the laser cavity as an intensity demodulator, and the function of separating and outputting the reflected signals of multiple fiber gratings can be realized by configuring the fiber bandpass filter. Experimental results show that the proposed sensing system has a good response to the dynamic strain signal at a frequency of up to 200 kHz, and it has the ability to demodulate the MHz frequency range signal. The feasibility of multiplex demodulation is also verified. The system has a simple structure and low cost, and can be applied to the detection of dynamic strain signals in structural health monitoring.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1006006

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、重庆市基础科学与前沿技术研究项目、重庆理工大学研究生创新项目;

收稿日期:2019-05-16

修改稿日期:2019-06-25

网络出版日期:2019-10-01

作者单位    点击查看

毛黎明:重庆理工大学理学院绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
陶传义:重庆理工大学理学院绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
顾子迪:中国人民解放军陆军勤务学院基础部, 重庆 401311
张婧:重庆理工大学理学院绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
成俊桦:重庆理工大学理学院绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
江旭海:重庆理工大学理学院绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
李娜:重庆理工大学理学院绿色能源材料技术与系统重庆市重点实验室, 重庆 400054

联系人作者:陶传义(taochuanyi@cqut.edu.cn)

备注:国家自然科学基金、重庆市基础科学与前沿技术研究项目、重庆理工大学研究生创新项目;

【1】Wei H M, Tao C Y, Zhu Y N et al. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source. Applied Optics. 55(10), 2752-2759(2016).

【2】Duan D W, Rao Y J, Hou Y S et al. Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement. Applied Optics. 51(8), 1033-1036(2012).

【3】Murayama H, Kageyama K, Uzawa K et al. Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Structural Health Monitoring. 11(3), 325-344(2012).

【4】Zhou W J, Wong W C, Chan C C et al. Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer. Applied Optics. 50(19), 3087-3092(2011).

【5】Wei H M, Zhao X F, Li D S et al. Corrosion monitoring of rock bolt by using a low coherent fiber-optic interferometry. Optics & Laser Technology. 67, 137-142(2015).

【6】Wei H M, Zhao X F, Kong X L et al. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures. Sensors. 14(1), 431-442(2013).

【7】Yilmaz G and Karlik S E. A distributed optical fiber sensor for temperature detection in power cables. Sensors and Actuators A: Physical. 125(2), 148-155(2006).

【8】Barrera D, Finazzi V, Villatoro J et al. Packaged optical sensors based on regenerated fiber Bragg gratings for high temperature applications. IEEE Sensors Journal. 12(1), 107-112(2012).

【9】López-Higuera J M, Rodriguez Cobo L, Quintela Incera A et al. . Fiber optic sensors in structural health monitoring. Journal of Lightwave Technology. 29(4), 587-608(2011).

【10】Guo H L, Xiao G Z, Mrad N et al. Fiber optic sensors for structural health monitoring of air platforms. Sensors. 11(4), 3687-3705(2011).

【11】Motamedi M H, Feng X, Zhang X T et al. Quantitative investigation in distributed sensing of structural defects with Brillouin optical time domain reflectometry. Journal of Intelligent Material Systems and Structures. 24(10), 1187-1196(2013).

【12】Ansari F. Practical implementation of optical fiber sensors in civil structural health monitoring. Journal of Intelligent Material Systems and Structures. 18(8), 879-889(2007).

【13】Liao Y B, Yuan L B and Tian Q. The 40 years of optical fiber sensors in China. Acta Optica Sinica. 38(3), (2018).
廖延彪, 苑立波, 田芊. 中国光纤传感40年. 光学学报. 38(3), (2018).

【14】Liao C R, He J and Wang Y P. Study on high temperature sensors based on fiber Bragg gratings fabricated by femtosecond laser. Acta Optica Sinica. 38(3), (2018).
廖常锐, 何俊, 王义平. 飞秒激光制备光纤布拉格光栅高温传感器研究. 光学学报. 38(3), (2018).

【15】Tsai P, Sun F G, Xiao G Z et al. A new fiber-Bragg-grating sensor interrogation system deploying free-spectral-range-matching scheme with high precision and fast detection rate. IEEE Photonics Technology Letters. 20(4), 300-302(2008).

【16】Han M, Liu T Q, Hu L L et al. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection. Optics Express. 21(24), 29269-29276(2013).

【17】Tao C Y and Wei H M. Dynamic strain sensor system using fiber Bragg grating-tuned semiconductor fiber ring laser. Acta Photonica Sinica. 45(7), (2016).
陶传义, 魏鹤鸣. 基于半导体光纤环形激光器的光纤布喇格光栅动态应变传感系统. 光子学报. 45(7), (2016).

【18】Rao Y J. In-fibre Bragg grating sensors. Measurement Science and Technology. 8(4), 355-375(1997).

【19】Yoshino T, Kurosawa K, Itoh K et al. Fiber-optic Fabry-Perot interferometer and its sensor applications. IEEE Transactions on Microwave Theory and Techniques. 30(10), 1612-1621(1982).

【20】Chen R, Tao C Y, Jiang X H et al. Detection of dynamic signals from multiplexed SOA-based fiber-ring laser sensors. Applied Optics. 57(35), 10159-10163(2018).

引用该论文

Liming Mao,Chuanyi Tao,Zidi Gu,Jing Zhang,Junhua Cheng,Xuhai Jiang,Na Li. Dynamic Strain Sensing System Based on Fiber Ring Laser[J]. Acta Optica Sinica, 2019, 39(10): 1006006

毛黎明,陶传义,顾子迪,张婧,成俊桦,江旭海,李娜. 基于光纤环形激光器的动态应变传感系统[J]. 光学学报, 2019, 39(10): 1006006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF