首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:231005--1)

基于粗糙数据推理的BSCB图像修补算法

BSCB Image Inpainting Algorithm Based on Rough Data Deduction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

BSCB模型在传输过程中引入Laplace算子时采用的点是某一像素周围4个邻点,对像素的表示会有局限性,进而造成修复后边缘模糊的现象。为优化这一问题,提出一种基于粗糙数据推理的改进BSCB算法,利用粗糙数据推理空间制定与某一像素相关联的采取规则以期挖掘像素之间的近似关系、衍生关系及拓展关系,选取与某一像素相关性最大的点,从而避免像素表示的局部性问题。实验结果表明,与经典的BSCB算法相比,改进后的算法在传输过程中采取的点更能体现图像结构,可获得较好的视觉效果,峰值信噪比也从数据层面证实修复效果的改善。

Abstract

The Laplace operator introduced in the BSCB model during the transmission process uses four adjacent points around a certain pixel, limiting the pixel representation and then resulting in blurred edges after restoration. In this study, an improved BSCB (Bertalmio, Sapiro, Caselles, Ballester) algorithm is proposed based on rough data deduction to optimize this problem. The improved BSCB algorithm uses the rough data deduction space to formulate rules related to a certain pixel for mining the approximation, derivation, and expansion relations between pixels and adopting points that exhibit the greatest correlation with a certain pixel, avoiding the locality of pixel representation. The experimental results denote that the points adopted during the transmission process of the improved BSCB algorithm can better reflect the image structure, and the proposed algorithm can obtain a better visual effect when compared with the classical BSCB algorithm. The peak signal-to-noise ratio also confirms the improvement of the restoration effect based on the data level.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.231005

所属栏目:图像处理

基金项目:国家自然科学基金、教育部人文社会科学研究基金;

收稿日期:2019-04-28

修改稿日期:2019-05-27

网络出版日期:2019-12-01

作者单位    点击查看

朱昭昭:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
周宁:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
陈永:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
王小刚:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070

联系人作者:周宁(zhouning@mail.lzjtu.cn)

备注:国家自然科学基金、教育部人文社会科学研究基金;

【1】Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[C]∥SIGGRAPH ''''00 Proceedings of the 27th annual conference on Computer graphics and interactive techniques, July 23-28, 2000, New Orleans, LA, USA. New York: , 2000, 417-424.

【2】Chan T F, Shen J H. Nontexture inpainting by curvature-driven diffusions [J]. Journal of Visual Communication and Image Representation. 2001, 12(4): 436-449.

【3】Shen J H, Chan T F. Mathematical models for local nontexture inpaintings [J]. SIAM Journal on Applied Mathematics. 2002, 62(3): 1019-1043.

【4】Tsai A, Yezzi A R, Willsky A S. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society. 2001, 10(8): 1169-1186.

【5】Esedoglu S, Shen J H. Digital inpainting based on the Mumford-Shah-Euler image model [J]. European Journal of Applied Mathematics. 2002, 13(4): 353-370.

【6】Chan T F, Kang S H, Shen J. Eider''''s elastica and curvature-based inpainting [J]. SIAM Journal on Applied Mathematics. 2002, 63(2): 564-592.

【7】Chen Q, Zheng Y H, Sun Q S, et al. Patch similarity based anisotropic diffusion for image denoising [J]. Journal of Computer Research and Development. 2010, 47(1): 33-42.
陈强, 郑钰辉, 孙权森, 等. 片相似性各项异性扩散图像去噪 [J]. 计算机研究与发展. 2010, 47(1): 33-42.

【8】Oliveira M, Bowen B. McKenna R, et al. Fast digital image inpainting . [C]∥Appeared in the Proceedings of the International Conference on Visualization, Imaging and Image Processing (VIIP 2001), September 3-5, 2001, Marbella, Spain. [S.l.: s.n.]. 2001.

【9】Tian Y Y. Research of image inpainting models based on PDE Xi''''an: [D]. Northwest University. 2008.
田艳艳. 基于偏微分方程的图像修补方法研究 [D]. 西安: 西北大学. 2008.

【10】Zeng X X, Chen F, Wang M Q. Image inpainting based on the BSCB model [J]. Journal of Fuzhou University(Natural Science Edition). 2009, 37(5): 657-661.
曾勋勋, 陈飞, 王美清. 基于BSCB模型的图像修补算法 [J]. 福州大学学报(自然科学版). 2009, 37(5): 657-661.

【11】Li S L, Wang H Q, Yang X H. Image inpainting using CDD based on p-Laplace [J]. Computer Simulation. 2010, 27(5): 189-193.
李苏莉, 王慧琴, 杨秀红. 基于p-Laplace算子的CDD图像修补算法 [J]. 计算机仿真. 2010, 27(5): 189-193.

【12】Dai N N, Cai L, Dai M L. Improved BSCB image inpainting algorithm [J]. Video Engineering. 2015, 39(2): 71-74, 79.
代妮娜, 蔡黎, 戴闽鲁. 一种改进的BSCB图像修补算法 [J]. 电视技术. 2015, 39(2): 71-74, 79.

【13】Hu H P, Liu X Z. Nonlocal version of BSCB model for image inpainting [J]. Communication on Applied Mathematics and Computation. 2015, 29(3): 374-382.
胡海平, 刘晓振. 一种基于非局部BSCB模型的图像修复方法 [J]. 应用数学与计算数学学报. 2015, 29(3): 374-382.

【14】Ma M, Xu W, Hao K H, et al. Neighborhood difference diffusion model for image inpainting [J]. Acta Metrologica Sinica. 2009, 30(5): 409-412.
马敏, 许微, 郝魁红, 等. 图像修复的邻域差值扩散模型 [J]. 计量学报. 2009, 30(5): 409-412.

【15】Jing Y F, Zhang X L, Guan Y H. Radiography image inpainting algorithm based on partial differential equations [J]. High Power Laser and Particle Beams. 2010, 22(2): 383-387.
景越峰, 张小琳, 管永红. 基于偏微分方程的闪光照相图像修补算法 [J]. 强激光与粒子束. 2010, 22(2): 383-387.

【16】Li W, He J H, Qu L, et al. Improved method for BSCB image inpainting [J]. Computer Engineering and Applications. 2008, 44(9): 184-186, 196.
李薇, 何金海, 屈磊, 等. 一种改进的BSCB修复模型 [J]. 计算机工程与应用. 2008, 44(9): 184-186, 196.

【17】Zhu X S, Qian Y J, Sun B, et al. Image inpainting forensics algorithm based on deep neural network [J]. Acta Optica Sinica. 2018, 38(11): 1110005.
朱新山, 钱永军, 孙彪, 等. 基于深度神经网络的图像修复取证算法 [J]. 光学学报. 2018, 38(11): 1110005.

【18】Du S S, Han C. An improved image inpainting algorithm based on total variation model [J]. Laser & Optoelectronics Progress. 2018, 55(7): 071005.
杜闪闪, 韩超. 基于总变分模型的改进图像修复算法 [J]. 激光与光电子学进展. 2018, 55(7): 071005.

【19】Lu W X, He K. Exemplar-based inpainting algorithm with rotation and scaling transformation [J]. Laser & Optoelectronics Progress. 2018, 55(3): 031006.
卢雯霞, 何凯. 基于样本块的旋转及缩放图像修复算法 [J]. 激光与光电子学进展. 2018, 55(3): 031006.

【20】Zhou N, Zhu Z Z. Criminisi image inpainting algorithm based on rough data-deduction [J]. Laser & Optoelectronics Progress. 2019, 56(2): 021005.
周宁, 朱昭昭. 基于粗糙数据推理的Criminisi图像修复算法 [J]. 激光与光电子学进展. 2019, 56(2): 021005.

【21】Wang A C, Cang S, Cao J. Algorithm for the improved BSCB model and sample-based block coupling for image restoration of knots in veneer [J]. Journal of Northeast Forestry University. 2010, 38(12): 71-74, 76.
王阿川, 苍圣, 曹军. 改进BSCB与样本块耦合的单板节子缺陷图像修补算法 [J]. 东北林业大学学报. 2010, 38(12): 71-74, 76.

【22】Bender H L, Farnham A G, Guyer J W, et al. Purified chemicals and resins from phenol and formaldehyde [J]. Industrial & Engineering Chemistry. 1952, 44(7): 1619-1623.

【23】Pawlak Z. Rough set: theoretical aspects of reasoning about data [M]. Media: Springer. 1991.

【24】Yan S, Yan L, Wu J Z. Rough data-deduction based on the upper approximation [J]. Information Sciences. 2016, 373: 308-320.

【25】Zhang H Y, Peng Q C, Wu Y D. Digital image inpainting algorithm for damaged images based on nonlinear anisotropic diffusion [J]. Journal of Computer-Aided Design & Computer Graphics. 2006, 18(10): 1541-1546.
张红英, 彭启琮, 吴亚东. 数字破损图像的非线性各向异性扩散修补算法 [J]. 计算机辅助设计与图形学学报. 2006, 18(10): 1541-1546.

引用该论文

Zhu Zhaozhao,Zhou Ning,Chen Yong,Wang Xiaogang. BSCB Image Inpainting Algorithm Based on Rough Data Deduction[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231005

朱昭昭,周宁,陈永,王小刚. 基于粗糙数据推理的BSCB图像修补算法[J]. 激光与光电子学进展, 2019, 56(23): 231005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF