Photonics Research, 2020, 8 (6): 06000830, Published Online: Apr. 30, 2020  

Dual-layered metasurfaces for asymmetric focusing Download: 743次

Author Affiliations
1 Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
3 e-mail: ymzhu@usst.edu.cn
Abstract
Asymmetric transmission, defined as the difference between the forward and backward transmission, enables a plethora of applications for on-chip integration and telecommunications. However, the traditional method for asymmetric transmission is to control the propagation direction of the waves, hindering further applications. Metasurfaces, a kind of two-dimensional metamaterials, have shown an unprecedented ability to manipulate the propagation direction, phase, and polarization of electromagnetic waves. Here we propose and experimentally demonstrate a metasurface-based directional device consisting of a geometric metasurface with spatially rotated microrods and metallic gratings, which can simultaneously control the phase, polarization, and propagation direction of waves, resulting in asymmetric focusing in the terahertz region. These dual-layered metasurfaces for asymmetric focusing can work in a wide bandwidth ranging from 0.6 to 1.1 THz. The flexible and robust approach for designing broadband asymmetric focusing may open a new avenue for compact devices with potential applications in encryption, information processing, and communication.

Bingshuang Yao, Xiaofei Zang, Zhen Li, Lin Chen, Jingya Xie, Yiming Zhu, Songlin Zhuang. Dual-layered metasurfaces for asymmetric focusing[J]. Photonics Research, 2020, 8(6): 06000830.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!