首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701016--1)

1.3 μm半导体量子点激光器的研究进展 (特邀综述)

Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于半导体量子点具有很强的三维量子限制效应,量子点(QD)激光器展现出低阈值电流、高调制速率、高温度稳定、低线宽增强因子和高抗反射等优异性能,有望在未来高速光通信及高速光互连等领域有重要的应用。同时,量子点结构具有对位错不敏感的特性,使得量子点激光器成为实现硅光集成所迫切需求的高效光源强有力候选者。先简要综述1.3 μm半导体量子点激光器的研究进展,再着重介绍GaAs基量子点激光器在阈值电流密度、温度稳定性、调制速率和抗反射特性等方面展示出的优异特性,最后对在切斜Si衬底和Si(001)衬底上直接外延生长的量子点激光器进行介绍。

Abstract

Owing to the strong three-dimensional quantum-confinement effect of semiconductor quantum dots (QDs), QD lasers exhibit superior performances with low threshold current, high modulation rate, high temperature stability, low linewidth enhancement factor, and high antireflection. They are expected to have important applications in high-speed optical communication, high-speed optical interconnection, and other fields. At the same time, a QD structure is insensitive to dislocations, making QD lasers powerful candidates for the efficient light sources that are urgently needed for silicon optical integration. First, we briefly review the research progress on 1.3-μm semiconductor QD lasers, and then focus on the excellent characteristics exhibited by GaAs-based QD lasers, including their threshold current density, temperature stability, modulation rate, and antireflection characteristics. We also introduce QD lasers grown directly on GaAs and Si (001) substrates.

广告组5 - 光束分析仪
补充资料

中图分类号:O475

DOI:10.3788/CJL202047.0701016

所属栏目:“半导体激光器”专题

基金项目:国家重点研发计划;

收稿日期:2020-02-12

修改稿日期:2020-04-01

网络出版日期:2020-07-01

作者单位    点击查看

吕尊仁:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049
张中恺:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049
王虹:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049
丁芸芸:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049
杨晓光:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049
孟磊:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049
柴宏宇:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049
杨涛:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049

联系人作者:杨涛(tyang@semi.ac.cn)

备注:国家重点研发计划;

【1】Zhu X N, Bao W X. Fundamentals of ultrashort pulse laser and its applications [J]. Chinese Journal of Lasers. 2019, 46(12): 1200001.
朱晓农, 包文霞. 超短脉冲激光及其相关应用的一些基本知识 [J]. 中国激光. 2019, 46(12): 1200001.

【2】Peng Y, Shi C J, Zhu Y M, et al. Qualitative andquantitative analysis algorithms based on terahertz spectroscopy for biomedical detection [J]. Chinese Journal of Lasers. 2019, 46(6): 0614002.
彭滟, 施辰君, 朱亦鸣, 等. 太赫兹光谱技术在生物医学检测中的定性与定量分析算法 [J]. 中国激光. 2019, 46(6): 0614002.

【3】Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China [J]. Chinese Journal of Lasers. 2019, 46(1): 0100003.
张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾 [J]. 中国激光. 2019, 46(1): 0100003.

【4】Wang J, Liu J, Zhao Y F. Research progress of structured light coding/decoding communications [J]. Acta Optica Sinica. 2019, 39(1): 0126013.
王健, 刘俊, 赵一凡. 结构光场编译码通信研究进展 [J]. 光学学报. 2019, 39(1): 0126013.

【5】Song Y H, Zhou Y D, Wang L, et al. Design of 780-nm high spectral resolution lidar based on laser diode [J]. Chinese Journal of Lasers. 2019, 46(10): 1001006.
宋跃辉, 周煜东, 汪丽, 等. 基于半导体激光器的780 nm高光谱分辨率激光雷达系统设计 [J]. 中国激光. 2019, 46(10): 1001006.

【6】Wang J, Gao X, Feng Z Z, et al. Radiation damage effect of quantum dot laser with space optical communication [J]. Vacuum and Cryogenics. 2019, 25(1): 41-45.
王俊, 高欣, 冯展祖, 等. 空间光通信用量子点激光器辐射损伤效应研究 [J]. 真空与低温. 2019, 25(1): 41-45.

【7】-03-12)[2020-02-11] . http:∥aiocore.com/. 2019.

【8】Asryan L V, Suris R A. Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser [J]. Semiconductor Science and Technology. 1996, 11(4): 554-567.

【9】Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current [J]. Applied Physics Letters. 1982, 40(11): 939-941.

【10】Xu P F. The research of 1.3 μm InAs/GaAs quantum dot lasers for optical communication [D]. Beijing: Graduate University of Chinese Academy of Sciences. 2012, 3-4.
1.3 μm InAs/GaAs量子点激光器特性研究 [D]. 北京: 中国科学院研究生院. 2012, 3-4.

【11】Miyamoto Y, Cao M, Shingai Y, et al. Light emission from quantum-box structure by current injection [J]. Japanese Journal of Applied Physics. 1987, 26: L225-L227.

【12】N?tzel R. Self-organized growth of quantum-dot structures [J]. Semiconductor Science and Technology. 1996, 11(10): 1365-1379.

【13】Kirstaedter N, Grundmann M, Richter U, et al. Low threshold, large to injection laser emission from (InGa)As quantum dots [J]. Electronics Letters. 1994, 30(17): 1416-1417.

【14】Huffaker D L, Park G, Zou Z, et al. 1.3 μm room-temperature GaAs-based quantum-dot laser [J]. Applied Physics Letters. 1998, 73(18): 2564-2566.

【15】Chand N. Becker E, van der Ziel J P, et al. Excellent uniformity and very low (<50 A/cm 2) threshold current density strained InGaAs quantum well diode lasers on GaAs substrate [J]. Applied Physics Letters. 1991, 58(16): 1704-1706.

【16】Turner G W, Choi H K, Manfra M J. Ultralow-threshold (50 A/cm 2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm [J]. Applied Physics Letters. 1998, 72(8): 876-878.

【17】Huffaker D L, Deppe D G. Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers [J]. IEEE Photonics Technology Letters. 1999, 11(8): 934-936.

【18】Liu G, Stintz A, Li H, et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well [J]. Electronics Letters. 1999, 35(14): 1163-1165.

【19】Liu G T, Stintz A, Li H, et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures [J]. IEEE Journal of Quantum Electronics. 2000, 36(11): 1272-1279.

【20】Liu H Y, Sellers I R, Badcock T J, et al. Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer [J]. Applied Physics Letters. 2004, 85(5): 704-706.

【21】Sellers I R, Liu H Y, Groom K M, et al. 1.3 μm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density [J]. Electronics Letters. 2004, 40(22): 1412-1413.

【22】Liu H Y, Childs D T, Badcock T J, et al. High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents [J]. IEEE Photonics Technology Letters. 2005, 17(6): 1139-1141.

【23】Liu C Y, Yoon S F, Cao Q, et al. Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers [J]. Applied Physics Letters. 2007, 90(4): 041103.

【24】Freisem S, Ozgur G, Shavritranuruk K, et al. Very-low-threshold current density continuous-wave quantum-dot laser diode [J]. Electronics Letters. 2008, 44(11): 679-681.

【25】Deppe D G, Shavritranuruk K, Ozgur G, et al. Quantum dot laser diode with low threshold and low internal loss [J]. Electronics Letters. 2009, 45(1): 54-56.

【26】Lü Z, Zhang Z K, Yang X G, et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping [J]. Applied Physics Letters. 2018, 113(1): 011105.

【27】Lester L F, Stintz A, Li H, et al. Optical characteristics of 1.24-μm InAs quantum-dot laser diodes [J]. IEEE Photonics Technology Letters. 1999, 11(8): 931-933.

【28】Shchekin O B, Ahn J, Deppe D G. High temperature performance of self-organised quantum dot laser with stacked p-doped active region [J]. Electronics Letters. 2002, 38(14): 712-713.

【29】Shchekin O B, Deppe D G. 1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 ℃ [J]. Applied Physics Letters. 2002, 80(18): 3277-3279.

【30】Shchekin O B, Deppe D G. Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region [J]. IEEE Photonics Technology Letters. 2002, 14(9): 1231-1233.

【31】Deppe D G, Huang H, Shchekin O B. Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed [J]. IEEE Journal of Quantum Electronics. 2002, 38(12): 1587-1593.

【32】Fathpour S, Mi Z T, Bhattacharya P, et al. The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers [J]. Applied Physics Letters. 2004, 85(22): 5164-5166.

【33】Ishida M, Hatori N, Otsubo K, et al. Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3 μm quantum dot lasers between 20 and 90 ℃ [J]. Electronics Letters. 2007, 43(4): 219-221.

【34】Jin C Y, Badcock T J, Liu H Y, et al. Observation and modeling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser [J]. IEEE Journal of Quantum Electronics. 2006, 42(12): 1259-1265.

【35】Badcock T J, Royce R J, Mowbray D J, et al. Low threshold current density and negative characteristic temperature 1.3 μm InAs self-assembled quantum dot lasers [J]. Applied Physics Letters. 2007, 90(11): 111102.

【36】Kageyama T, Nishi K, Yamaguchi M, et al. Extremely high temperature (220 ℃) continuous-wave operation of 1300-nm-range quantum-dot lasers . [C]∥2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), May 22-26, 2011, Munich, Germany. New York: IEEE. 2011, 12248755.

【37】Gready D, Eisenstein G, Gioannini M, et al. On the relationship between small and large signal modulation capabilities in highly nonlinear quantum dot lasers [J]. Applied Physics Letters. 2013, 102(10): 101107.

【38】Asryan L V, Suris R A. Upper limit for the modulation bandwidth of a quantum dot laser [J]. Applied Physics Letters. 2010, 96(22): 221112.

【39】Shchekin O B, Deppe D G. The role of p-type doping and the density of states on the modulation response of quantum dot lasers [J]. Applied Physics Letters. 2002, 80(15): 2758-2760.

【40】Su H, Zhang L, Gray A L, et al. High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers [J]. IEEE Photonics Technology Letters. 2003, 15(11): 1504-1506.

【41】Todaro M T, Salhi A, Fortunato L, et al. High-performance directly modulated 1.3-μm undoped InAs-InGaAs quantum-dot lasers [J]. IEEE Photonics Technology Letters. 2007, 19(4): 191-193.

【42】Otsubo K, Hatori N, Ishida M, et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments [J]. Japanese Journal of Applied Physics. 2004, 43(8): 1124-1126.

【43】Fathpour S, Mi Z, Bhattacharya P. Small-signal modulation characteristics of p-doped 1.1- and 1.3-μm quantum-dot lasers [J]. IEEE Photonics Technology Letters. 2005, 17(11): 2250-2252.

【44】Mi Z T, Bhattacharya P, Fathpour S. High-speed 1.3 μm tunnel injection quantum-dot lasers [J]. Applied Physics Letters. 2005, 86(15): 153109.

【45】Kim S M, Wang Y, Keever M, et al. High-frequency modulation characteristics of 1.3-μm InGaAs quantum dot lasers [J]. IEEE Photonics Technology Letters. 2004, 16(2): 377-379.

【46】Terry N, Naderi N, Pochet M, et al. Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser [J]. Electronics Letters. 2008, 44(15): 904-905.

【47】Sugawara M, Usami M. Quantum dot devices: handling the heat [J]. Nature Photonics. 2009, 3(1): 30-31.

【48】Tanaka Y, Ishida M, Takada K, et al. 25 Gbps direct modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers . [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States. Washington, D.C.: OSA. 2010, CTuZ1.

【49】Tanaka Y, Takada K, Ishida M, et al. High-speed modulation in 1.3-μm InAs/GaAs high-density quantum dot lasers . [C]∥Asia Communications and Photonics Conference and Exhibition, December 8-12, 2010, Shanghai, China. New York: IEEE. 2010, 577-578.

【50】Ishida M, Matsuda M, Tanaka Y, et al. Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers . [C]∥Conference on Lasers and Electro-Optics 2012, May 6-11, 2012, San Jose, California, United States. Washington, D.C.: OSA. 2012, CM1I: 2.

【51】Ji H M, Yang T, Cao Y L, et al. A 10 Gb/s directly-modulated 1.3 μm InAs/GaAs quantum-dot laser [J]. Chinese Physics Letters. 2010, 27(3): 034209.

【52】O''''Brien D. Hegarty S P, Huyet G, et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers [J]. Electronics Letters. 2003, 39(25): 1819.

【53】He Y M, Zhang Z K, Lü Z, et al. Modulation performance comparison of quantum-dot and quantum-well lasers under external feedback . [C]∥2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), July 7-11, 2019, Fukuoka, Japan. New York: IEEE. 2019, 19009854.

【54】Mizutani K, Yashiki K, Kurihara M, et al. Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser . [C]∥2015 European Conference on Optical Communication (ECOC), September 27-October 1, 2015, Valencia, Spain. New York: IEEE. 2015, 15635867.

【55】Huang H, Schires K, Lin L C, et al. Dynamics of excited-state InAs/GaAs Fabry-Perot quantum-dot lasers under optical feedback . [C]∥2016 Conference on Lasers and Electro-Optics (CLEO), June 5-10, 2016, San Jose, CA, USA. New York: IEEE. 2016, 16543333.

【56】Huang H M, Lin L, Chen C, et al. Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes [J]. Optics Express. 2018, 26(2): 1743-1751.

【57】Lin L, Chen C, Huang H M, et al. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states [J]. Optics Letters. 2018, 43(2): 210-213.

【58】Zhou Y G, Zhao X, Cao C F, et al. High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium [J]. Optics Express. 2018, 26(21): 28131-28139.

【59】Zhou Y G, Zhou C, Cao C F, et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge [J]. Optics Express. 2017, 25(23): 28817-28824.

【60】Markus A, Chen J X, Parantho?n C, et al. Simultaneous two-state lasing in quantum-dot lasers [J]. Applied Physics Letters. 2003, 82(12): 1818-1820.

【61】Majid M. Childs D T D, Kennedy K, et al. O-band excited state quantum dot bilayer lasers [J]. Applied Physics Letters. 2011, 99(5): 051101.

【62】Stevens B J. Childs D T D, Shahid H, et al. Direct modulation of excited state quantum dot lasers [J]. Applied Physics Letters. 2009, 95(6): 061101.

【63】Liu C Y, Wang H, Meng Q Q, et al. Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 μm InAs/InGaAs quantum dot lasers [J]. Applied Physics Express. 2013, 6(10): 102702.

【64】Xu P F, Yang T, Ji H M, et al. Temperature-dependent modulation characteristics for 1.3 μm InAs/GaAs quantum dot lasers [J]. Journal of Applied Physics. 2010, 107(1): 013102.

【65】Ji H M, Yang T, Cao Y L, et al. Self-heating effect on the two-state lasing behaviors in 1.3-μm InAs-GaAs quantum-dot lasers [J]. Japanese Journal of Applied Physics. 2010, 49(7): 072103.

【66】Lü Z, Ji H M, Luo S, et al. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation [J]. AIP Advances. 2015, 5(10): 107115.

【67】Lü Z, Ji H M, Yang X G, et al. Large signal modulation characteristics in the transition regime for two-state lasing quantum dot lasers [J]. Chinese Physics Letters. 2016, 33(12): 124204.

【68】R?hm A, Lingnau B, Lüdge K. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices [J]. Applied Physics Letters. 2015, 106(19): 191102.

【69】Wang C, Lingnau B, Lüdge K, et al. Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state [J]. IEEE Journal of Quantum Electronics. 2014, 50(9): 1-9.

【70】Arsenijevic D, Schliwa A, Schmeckebier H, et al. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers [J]. Applied Physics Letters. 2014, 104(18): 181101.

【71】Arsenijevic D, Bimberg D. Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying [J]. Proceedings of SPIE. 2016, 9892: 98920S.

【72】Xu P F, Ji H M, Xiao J L, et al. Reduced linewidth enhancement factor due to excited state transition of quantum dot lasers [J]. Optics Letters. 2012, 37(8): 1298-1300.

【73】Cataluna M A, Sibbett W, Livshits D, et al. Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser [J]. Applied Physics Letters. 2006, 89(8): 081124.

【74】Cataluna M A, Nikitichev D I, Mikroulis S, et al. Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation [J]. Optics Express. 2010, 18(12): 12832-12838.

【75】Grillot F, Naderi N, Wright J B, et al. A dual-mode quantum dot laser operating in the excited state [J]. Applied Physics Letters. 2011, 99(23): 231110.

【76】Wang T, Liu H Y, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates [J]. Optics Express. 2011, 19(12): 11381-11386.

【77】Lee A, Jiang Q, Tang M C, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities [J]. Optics Express. 2012, 20(20): 22181-22187.

【78】Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon [J]. Applied Physics Letters. 2014, 104(4): 041104.

【79】Liu A Y, Herrick R W, Ueda O, et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2015, 21(6): 690-697.

【80】Chen S M, Li W, Wu J, et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon [J]. Nature Photonics. 2016, 10(5): 307-311.

【81】Shutts S, Allford C P, Spinnler C, et al. Degradation of III-V quantum dot lasers grown directly on silicon substrates [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2019, 25(6): 18769741.

【82】Yang G Q, Xu B, Liang P, et al. C]∥The 12th national symposium on Si-based optoelectronic materials and devices. [S.l.: s.n.]. 2017.
杨冠卿, 徐波, 梁平, 等. 出版者不详]: , 2017.

【83】Chen S M, Tang M C, Wu J, et al. 1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 ℃ [J]. Electronics Letters. 2014, 50(20): 1467-1468.

【84】Wang T, Zhang J J, Liu H. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect [J]. Acta Physica Sinica. 2015, 64(20): 204209.
王霆, 张建军, Liu H. 硅基Ⅲ-Ⅴ族量子点激光器的发展现状和前景 [J]. 物理学报. 2015, 64(20): 204209.

【85】Wu J, Chen S M, Seeds A J, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells [J]. Journal of Physics D. 2015, 48(36): 363001.

【86】Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si [J]. Optics Letters. 2017, 42(2): 338-341.

【87】Kunert B, Németh I, Reinhard S, et al. Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate [J]. Thin Solid Films. 2008, 517(1): 140-143.

【88】Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration [J]. Journal of Crystal Growth. 2011, 315(1): 37-47.

【89】Jung D, Norman J, Kennedy M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si [J]. Applied Physics Letters. 2017, 111(12): 122107.

【90】Liu S T, Jung D, Norman J, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si [J]. Electronics Letters. 2018, 54(7): 432-433.

【91】Liu S T, Wu X R, Jung D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity [J]. Optics. 2019, 6(2): 128-134.

【92】Jung D, Zhang Z Y, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency [J]. ACS Photonics. 2018, 5(3): 1094-1100.

【93】Buffolo M, Samparisi F, Rovere L, et al. Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2020, 26(2): 18990272.

【94】Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon [J]. Optics Letters. 2016, 41(7): 1664-1667.

【95】Norman J, Kennedy M J, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si [J]. Optics Express. 2017, 25(4): 3927-3934.

【96】Wan Y T, Jung D, Norman J, et al. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si [J]. Optics Express. 2017, 25(22): 26853-26860.

【97】Chen S M, Liao M Y, Tang M C, et al. Electrically pumped continuous-wave 13 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates [J]. Optics Express. 2017, 25(5): 4632-4639.

【98】Wan Y T, Shang C, Norman J, et al. Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2020, 26(2): 1900409.

【99】Kwoen J, Jang B, Lee J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001) [J]. Optics Express. 2018, 26(9): 11568-11576.

【100】Kwoen J, Jang B, Watanabe K, et al. High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si(001) [J]. Optics Express. 2019, 27(3): 2681-2688.

引用该论文

Lü Zunren,Zhang Zhongkai,Wang Hong,Ding Yunyun,Yang Xiaoguang,Meng Lei,Chai Hongyu,Yang Tao. Research Progress on 1.3 μm Semiconductor Quantum-Dot Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701016

吕尊仁,张中恺,王虹,丁芸芸,杨晓光,孟磊,柴宏宇,杨涛. 1.3 μm半导体量子点激光器的研究进展[J]. 中国激光, 2020, 47(7): 0701016

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF