首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:201015--1)

基于颜色信息和几何信息的点云自适应配准算法

Point Cloud Adaptive Registration Algorithm Based on Color Information and Geometric Information

王勇   黎春  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在三维点云配准中,当点云表面比较平坦、几何特征不明显时,迭代最近点算法配准效果较差,甚至经常配准失败。利用三维激光扫描仪获取的点云数据不仅包括几何坐标信息还包含RGB信息,充分利用点云坐标信息和RGB信息,提出了一种新的点云配准方法。该方法首先将RGB值转化成灰度值,并根据灰度值方差与各曲率方差之和设置权重因子,然后根据权重因子自适应地调整颜色信息和几何信息对配准的影响,实现了基于颜色信息和基于几何信息的有机结合。实验结果表明,该方法可实现不同点云的稳定精确配准。

Abstract

In the three-dimensional point cloud registration, when the surface of the point cloud is relatively flat and the geometric features are fuzzy, the iterative closest point algorithm has poor registration results, even often fails to register. The point cloud data obtained by the three-dimensional laser scanner includes geometric coordinate information and RGB information. Here, by making full use of point cloud coordinate information and RGB information, we propose a new point cloud registration method, which first convert RGB values into grayscale values, set the weighting factor according to the sum of the variance of the gray value and the sum of the variances of each curvature, and then adaptively adjust the impact of color information and geometric information on registration in the light of the weighting factor to achieve an organic combination based on color information and geometric information. Experimental results show that the proposed method can achieve stable and accurate registration of different point clouds.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.201015

所属栏目:图像处理

基金项目:国家自然科学基金青年基金、重庆市科学技术委员会基础与前沿研究重点项目、 重庆市巴南区技术合作项目、重庆理工大学研究生创新基金项目;

收稿日期:2019-12-10

修改稿日期:2020-03-09

网络出版日期:2020-10-01

作者单位    点击查看

王勇:重庆理工大学两江人工智能学院, 重庆 401135
黎春:重庆理工大学计算机科学与工程学院, 重庆 400054

联系人作者:黎春(2351583604@qq.com)

备注:国家自然科学基金青年基金、重庆市科学技术委员会基础与前沿研究重点项目、 重庆市巴南区技术合作项目、重庆理工大学研究生创新基金项目;

【1】Besl P J. McKay N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(2): 239-256.

【2】Li W M, Song P F. A modified ICP algorithm based on dynamic adjustment factor for registration of point cloud and CAD model [J]. Pattern Recognition Letters. 2015, 65: 88-94.

【3】Sun J H, Zhang J, Zhang G J. An automatic 3D point cloud registration method based on regional curvature maps [J]. Image and Vision Computing. 2016, 56: 49-58.

【4】Chen X, He B W. A fast global registration algorithm based on correcting point cloud principal component coordinate system [J]. Laser & Optoelectronics Progress. 2018, 55(6): 061003.
陈旭, 何炳蔚. 一种基于校正点云主成分坐标系的快速全局配准算法 [J]. 激光与光电子学进展. 2018, 55(6): 061003.

【5】Liu J, Bai D. 3D point cloud registration algorithm based on feature matching [J]. Acta Optica Sinica. 2018, 38(12): 1215005.
刘剑, 白迪. 基于特征匹配的三维点云配准算法 [J]. 光学学报. 2018, 38(12): 1215005.

【6】Men H, Gebre B, Pochiraju K. Color point cloud registration with 4D ICP algorithm[C]//2011 IEEE International Conference on Robotics and Automation. 9-13 May 2011, Shanghai, China. New York: , 2011, 1511-1516.

【7】Su B Y, Han W, Peng Y S, et al. 4D-ICP point cloud registration method for RGB-D data Journal of Nanjing University (Natural Science)[J]. 0, 2018(4): 829-837.
苏本跃, 韩韦, 彭玉升, 等. 面向RGB-D数据的4D-ICP点云配准方法 南京大学学报(自然科学版)[J]. 0, 2018(4): 829-837.

【8】Park J, Zhou Q Y, Koltun V. Colored point cloud registration revisited[C]//2017 IEEE International Conference on Computer Vision (ICCV). 22-29 Oct. 2017, Venice, Italy. New York: , 2017, 143-152.

【9】Lohani B, Sasidharan S. An evaluation of intensity augmented ICP for terrestrial LiDAR data registration [J]. Journal of Geomatics. 2017, 11(2): 119-148.

【10】Wang Y, Li C, He Y M, et al. Improved multi-resolution point cloud automatic registration algorithm [J]. Journal of Chinese Computer Systems. 2019, 40(10): 2236-2240.
王勇, 黎春, 何养明, 等. 改进的多分辨率点云自动配准算法 [J]. 小型微型计算机系统. 2019, 40(10): 2236-2240.

【11】Jost T, Hugli H. A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images[C]//Fourth International Conference on 3-D Digital Imaging and Modeling. 6-10 Oct. 2003, Banff, Alta., Canada. New York: , 2003, 427-433.

【12】Zhu H, et al. Digital image processing[M]. Beijing: Science Press, 2005.
朱虹, 等. 数字图像处理基础[M]. 北京: 科学出版社, 2005.

引用该论文

Wang Yong,Li Chun. Point Cloud Adaptive Registration Algorithm Based on Color Information and Geometric Information[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201015

王勇,黎春. 基于颜色信息和几何信息的点云自适应配准算法[J]. 激光与光电子学进展, 2020, 57(20): 201015

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF