首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170606--1)

低损耗硫系红外光纤制备及其应用研究进展

Progress in Preparation and Applications of Low-Loss Chalcogenide Infrared Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

硫系玻璃具有红外透过范围宽、非线性系数高、易光纤化等特点,在中红外光子集成、光纤光源、传感等光学领域极具应用前景。随着红外光学的发展,硫系玻璃及其光纤研究取得了许多进展。为此,综述低损耗硫系玻璃光纤制备及其在光纤器件(耦合器、合束器、传像束和光纤光栅)和光纤光源、光纤传感等方面的研究进展,分析存在的问题,并展望未来发展方向。

Abstract

Due to the characteristics of wide mid-infrared transmission range, high non-linear coefficients, and easily fiberized performance, chalcogenide glass has very important applications in mid-infrared photonic integration, optical fiber source, sensing, and other optical fields. In recent years, with further development of the infrared optics, some progresses have been made in the research of chalcogenide glasses and their optical fibers. From this point of view, the research progress of the fabrication of low-loss chalcogenide fiber, and its application fields including fiber devices (couplers, combiners, bundles,and fiber gratings), fiber-based light sources, and optical fiber sensing at home and abroad are summarized in this review. Besides, some existing problems are analyzed and the future development direction is prospected.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170606

所属栏目:功能光纤

基金项目:国家自然科学基金、中科院创新交叉团队项目、陕西省自然科学基金;

收稿日期:2019-04-30

修改稿日期:2019-07-01

网络出版日期:2019-09-01

作者单位    点击查看

郭海涛:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
崔健:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119中国科学院大学, 北京 100045
许彦涛:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119中国科学院大学, 北京 100045
肖旭升:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119

联系人作者:郭海涛(guoht_001@opt.ac.cn)

备注:国家自然科学基金、中科院创新交叉团队项目、陕西省自然科学基金;

【1】Sanghera J S, Aggarwal I D, Shaw L B et al. Nonlinear properties of chalcogenide glass fibers. Journal of Optoelectronics and Advanced Materials. 8(6), 2148-2155(2006).

【2】Abedin K S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Optics Express. 13(25), 10266-10271(2005).

【3】Thielen P A, Shaw L B, Pureza P C et al. Small-core As-Se fiber for Raman amplification. Optics Letters. 28(16), 1406-1408(2003).

【4】Kapany N S and Simms R J. Recent developments in infrared fiber optics. Infrared Physics. 5(2), 69-80(1965).

【5】Coractive. IR fibers. (2019).

【6】IRflex. Products[2019-4-26]. https://irflex.com/products/. (0).

【7】Art photonics. Chalcogenide IR-fibers-. (2019).

【8】Snopatin G E, Shiryaev V S, Plotnichenko V G et al. High-purity chalcogenide glasses for fiber optics. Inorganic Materials. 45(13), 1439-1460(2009).

【9】Shiryaev V S, Mishinov S V and Churbanov M F. Investigation of adhesion of chalcogenide glasses to silica glass. Journal of Non-Crystalline Solids. 408, 71-75(2015).

【10】Mishinov S V, Churbanov M F, Gorokhov A N et al. Adhesion mechanism of destruction of silica-glass surface during the preparation and treatment of optical glassy arsenic chalcogenides. Inorganic Materials. 52(7), 716-720(2016).

【11】Nguyen V Q, Sanghera J S, Cole B et al. Fabrication of arsenic sulfide optical fiber with low hydrogen impurities. Journal of the American Ceramic Society. 85(8), 2056-2058(2002).

【12】Nguyen V Q, Sanghera J S, Pureza P et al. Fabrication of arsenic selenide optical fiber with low hydrogen impurities. Journal of the American Ceramic Society. 85(11), 2849-2851(2002).

【13】Troles J, Shiryaev V, Churbanov M et al. GeSe4 glass fibres with low optical losses in the mid-IR. Optical Materials. 32(1), 212-215(2009).

【14】Xu Y T, Guo H T, Yan X T et al. Preparation and applications of low-loss As-S chalcogenide glass fibers. Journal of Inorganic Materials. 30(1), 97-101(2015).
许彦涛, 郭海涛, 闫兴涛 等. 低损耗As-S玻璃光纤的制备与应用研究. 无机材料学报. 30(1), 97-101(2015).

【15】Xu Y T, Guo H T, Lu M et al. Preparation and properties of low-loss core-cladding structural Ge-Sb-Se chalcogenide glass fibers. Infrared and Laser Engineering. 44(1), 182-187(2015).
许彦涛, 郭海涛, 陆敏 等. 低损耗芯包结构Ge-Sb-Se硫系玻璃光纤的制备与性能研究. 红外与激光工程. 44(1), 182-187(2015).

【16】Churbanov M F, Snopatin G E, Shiryaev V S et al. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics. Journal of Non-Crystalline Solids. 357(11/12/13), 2352-2357(2011).

【17】Dianov E M, Petrov M Y, Plotnichenko V G et al. Estimate of the minimum optical losses in chalcogenide glasses. Soviet Journal of Quantum Electronics. 12(4), 498-499(1982).

【18】Lines M E. Scattering losses in optic fiber materials. II.numerical estimates. Journal of Applied Physics. 55(11), 4058-4063(1984).

【19】Kanamori T, Terunuma Y, Takahashi S et al. Chalcogenide glass fibers for mid-infrared transmission. Journal of Lightwave Technology. 2(5), 607-613(1984).

【20】Velmuzhov A P, Sibirkin A A, Shiryaev V S et al. Preparation of Ge-Sb-SI glass system via volatile iodides. Journal of Optoelectronics and Advanced Materials. 13(7/8), 936-939(2011).

【21】Velmuzhov A P, Sibirkin A A, Shiryaev V S et al. Preparation of glasses in the Ge-Sb-Se-I system via volatile iodides. Journal of Non-Crystalline Solids. 405, 100-103(2014).

【22】Velmuzhov A P, Sukhanov M V, Shiryaev V S et al. Preparation of special purity Ge-S-I and Ge-Se-I glasses. Optical Materials. 67, 59-63(2017).

【23】Shiryaev V S, Velmuzhov A P, Tang Z Q et al. Preparation of high purity glasses in the Ga-Ge-As-Se system. Optical Materials. 37, 18-23(2014).

【24】Karaksina E V, Shiryaev V S, Kotereva T V et al. Preparation of high-purity Pr 3+ doped Ge-Ga-Sb-Se glasses with intensive middle infrared luminescence . Journal of Luminescence. 170, 37-41(2016).

【25】Karaksina E V, Shiryaev V S, Kotereva T V et al. Preparation of high-purity Pr 3+ doped Ge-As-Se-In-I glasses for active mid-infrared optics . Journal of Luminescence. 177, 275-279(2016).

【26】Shiryaev V S, Karaksina E V, Kotereva T V et al. Preparation and investigation of Pr 3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics . Journal of Luminescence. 183, 129-134(2017).

【27】Katsuyama T, Satoh S and Matsumura H. Fabrication of high-purity chalcogenide glasses by chemical vapor deposition. Journal of Applied Physics. 59(5), 1446-1449(1986).

【28】Huang C C and Hewak D W. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition. Electronics Letters. 40(14), 863-865(2004).

【29】Vasil''''ev A V, Devyatykh G G, Dianov E M et al. . Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km. Quantum Electronics. 23(2), 89-90(1993).

【30】Mossadegh R, Sanghera J S, Schaafsma D et al. Fabrication of single-mode chalcogenide optical fiber. Journal of Lightwave Technology. 16(2), 214-217(1998).

【31】Karaksina E V, Shiryaev V S, Churbanov M F et al. Core-clad Pr 3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics . Optical Materials. 72, 654-660(2017).

【32】Nishii J, Yamashita T and Yamagishi T. Chalcogenide glass fiber with a core-cladding structure. Applied Optics. 28(23), 5122-5127(1989).

【33】Nishii J, Morimoto S, Inagawa I et al. Recent advances and trends in chalcogenide glass fiber technology: a review. Journal of Non-Crystalline Solids. 140, 199-208(1992).

【34】Shiryaev V S, Churbanov M F, Snopatin G E et al. Preparation of low-loss core-clad As-Se glass fibers. Optical Materials. 48, 222-225(2015).

【35】Churbanov M F, Shiryaev V S, Suchkov A I et al. High-purity As-S-Se and As-Se-Te glasses and optical fibers. Inorganic Materials. 43(4), 441-447(2007).

【36】Wang Z X, Guo H T, Xiao X S et al. Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication. Journal of Alloys and Compounds. 692, 1010-1017(2017).

【37】Zhang B, Zhai C C, Qi S S et al. High-resolution chalcogenide fiber bundles for infrared imaging. Optics Letters. 40(19), 4384-4387(2015).

【38】Zhang B, Guo W, Yu Y et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation. Journal of the American Ceramic Society. 98(5), 1389-1392(2015).

【39】Itoh K, Miura K, Masuda I et al. Low-loss fluorozirco-aluminate glass fiber. Journal of Non-Crystalline Solids. 167(1/2), 112-116(1994).

【40】Furniss D and Seddon A B. Extrusion of gallium lanthanum sulfide glasses for fiber-optic preforms. Journal of Materials Science Letters. 17(18), 1541-1542(1998).

【41】Sun Y N, Dai S X, Zhang P Q et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. Optics Express. 23(18), 23472-23483(2015).

【42】Xue Z G, Li Q L, Chen P et al. Mid-infrared supercontinuum in well-structured As-Se fibers based on peeled-extrusion. Optical Materials. 89, 402-407(2019).

【43】Liu S, Tang J Z, Liu Z J et al. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method. Acta Optica Sinica. 36(10), (2016).
刘硕, 唐俊州, 刘自军 等. 低损耗硫系玻璃光纤的挤压制备及其性能研究. 光学学报. 36(10), (2016).

【44】Tugendhaft I, Bornstein A, Weissman Y et al. Directional multimode fiber couplers in the mid-infrared. Optical Engineering. 34(10), 2846-2849(1995).

【45】Schaafsma D T, Moon J A, Sanghera J S et al. Fused taper infrared optical fiber couplers in chalcogenide glass. Journal of Lightwave Technology. 15(12), 2242-2245(1997).

【46】Gattass R R, Shaw L B, Kung F H et al. Infrared fiber N×1 multimode combiner. IEEE Photonics Journal. 5(5), (2013).

【47】Daniels A and Liepmann T W. Fiber optically coupled infrared focal plane array system for use in missile warning receiver applications. Proceedings of SPIE. 3701, 118-130(1999).

【48】Li L B, Feng Y T, Wang S et al. Four dimensional spectral imager with integral field fiber bundle. Acta Optica Sinica. 34(5), (2014).
李立波, 冯玉涛, 王爽 等. 光纤视场合成四维光谱成像仪. 光学学报. 34(5), (2014).

【49】Hilton A R. Infrared imaging bundle development at amorphous materials. Proceedings of SPIE. 3849, 60-66(1999).

【50】Lü B Y, Yang K W, Xue H K et al. 2 meter length IR coherent bundle of As-Se-Te glass fibers. Infrared and Laser Engineering. 30(5), 357-360(2001).
吕步云, 杨克武, 薛洪逵 等. 2 m长As-Se-Te玻璃红外光纤传像束. 红外与激光工程. 30(5), 357-360(2001).

【51】Yang K W, Wei G S and Wu P L. Image bundle of As-S glass infrared fibers. Journal of Applied Optics. 20(1), 32-35(1999).
杨克武, 魏国盛, 吴佩兰. As-S玻璃红外光纤传像束. 应用光学. 20(1), 32-35(1999).

【52】Zhan H, Yan X T, Guo H T et al. Line-plane-switching infrared bundle for push-broom sensing fiber imaging. Optical Materials. 42, 491-494(2015).

【53】Asobe M, Ohara T, Yokohama I et al. Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method. Electronics Letters. 32(17), 1611-1613(1996).

【54】Florea C, Sanghera J S, Shaw B et al. Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask. Optical Materials. 31(6), 942-944(2009).

【55】Bernier M, El-Amraoui M, Couillard J F et al. Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm. Optics Letters. 37(18), 3900-3902(2012).

【56】Bernier M, Fortin V, El-Amraoui M et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Optics Letters. 39(7), 2052-2055(2014).

【57】Nemanich R J. Low-frequency inelastic light scattering from chalcogenide glasses and alloys. Physical Review B. 16(4), 1655-1674(1977).

【58】Thielen P A, Shaw L B, Sanghera J S et al. Modeling of a mid-IR chalcogenide fiber Raman laser. Optics Express. 11(24), 3248-3253(2003).

【59】Jackson S D and Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser. Applied Physics Letters. 88(22), (2006).

【60】Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser. Optics Letters. 38(2), 127-129(2013).

【61】Ogusu K, Li H P and Kitao M. Brillouin-gain coefficients of chalcogenide glasses. Journal of the Optical Society of America B. 21(7), 1302-1304(2004).

【62】Abedin K S. Single-frequency Brillouin lasing using single-mode As2Se3 chalcogenide fiber. Optics Express. 14(9), 4037-4042(2006).

【63】Tow K H, Léguillon Y, Besnard P et al. Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber. Optics Letters. 37(7), 1157-1159(2012).

【64】Quimby R S, Shaw L B, Sanghera J S et al. Modeling of cascade lasing in Dy∶chalcogenide glass fiber laser with efficient output at 4.5 μm. IEEE Photonics Technology Letters. 20(2), 123-125(2008).

【65】Sujecki S and Sójka L. Bere -Pawlik E, et al. Modelling of a simple Dy 3+ doped chalcogenide glass fibre laser for mid-infrared light generation . Optical and Quantum Electronics. 42(2), 69-79(2010).

【66】Falconi M C, Palma G, Starecki F et al. Design of an efficient pumping scheme for mid-IR Dy 3+∶Ga5Ge20Sb10S65 PCF fiber laser . IEEE Photonics Technology Letters. 28(18), 1984-1987(2016).

【67】Xiao X S, Xu Y T, Guo H T et al. Theoretical modeling of 4.3 μm mid-infrared lasing in Dy 3+-doped chalcogenide fiber lasers . IEEE Photonics Journal. 10(2), (2018).

【68】Wei K. Synthesis and characterization of rare-earth doped chalcogenide glasses. New Jersey: The State University of New Jersey. (1994).

【69】Heo J and Shin Y B. Absorption and mid-infrared emission spectroscopy of Dy 3+ in Ge-As(or Ga)-S glasses . Journal of Non-Crystalline Solids. 196, 162-167(1996).

【70】Ohishi Y, Mori A, Kanamori T et al. Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3-μm fiber amplifiers. Applied Physics Letters. 65(1), 13-15(1994).

【71】Samson B N, Schweizer T, Moore R C et al. Neodymium doped chalcogenide glass fibre laser. [C]//Technical Digest CLEO/Pacific Rim''''97 Pacific Rim Conference on Lasers and Electro-Optics, July 14-18, 1997, Chiba, Japan. New York: IEEE. 51-52(1997).

【72】Shephard J D, Kangley R I, Hand R J et al. Analysis of oxide content in gallium lanthanum sulphide (GLS) glasses by infrared absorption spectroscopy. Physics and Chemistry of Glasses. 44(4), 267-271(2003).

【73】Seddon A B, Tang Z Q, Furniss D et al. Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express. 18(25), 26704-26719(2010).

【74】Tang Z Q, Furniss D, Fay M et al. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass. Optical Materials Express. 5(4), 870-886(2015).

【75】Sojka L, Tang Z, Furniss D et al. Mid-infrared emission in Tb 3+-doped selenide glass fiber . Journal of the Optical Society of America B. 34(3), A70-A79(2017).

【76】Chahal R, Starecki F, Doualan J L et al. Nd 3+∶Ga-Ge-Sb-S glasses and fibers for luminescence in mid-IR: synthesis, structural characterization and rare earth spectroscopy . Optical Materials Express. 8(6), 1650-1671(2018).

【77】Starecki F, Abdellaoui N, Braud A et al. 8 μm luminescence from a Tb 3+ GaGeSbSe fiber . Optics Letters. 43(6), 1211-1214(2018).

【78】Yang A P, Qiu J H, Zhang M J et al. Mid-infrared luminescence of Dy 3+ ions in modified Ga-Sb-S chalcogenide glasses and fibers . Journal of Alloys and Compounds. 695, 1237-1242(2017).

【79】Cui J, Xiao X S, Xu Y T et al. Mid-infrared emissions of Dy 3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser . Optical Materials Express. 8(8), 2089-2102(2018).

【80】Tao G M, Guo H T, Feng L et al. Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration. Journal of the American Ceramic Society. 92(10), 2226-2229(2009).

【81】Guo H T, Liu L, Wang Y Q et al. Host dependence of spectroscopic properties of Dy 3+-doped and Dy 3+, Tm 3+-codped Ge-Ga-S-CdI2 chalcohalide glasses . Optics Express. 17(17), 15350-15358(2009).

【82】Chen H Y, Cui X X, Guo H T et al. Mid-infrared luminescence of Pr 3+-doped GeS2-Ga2S3-PbI2 bulk chalcohalide glasses . Science of Advanced Materials. 9(3/4), 353-358(2017).

【83】Meng W, Xu Y T, Guo H T et al. Investigation of mid-IR luminescence properties and energy transfer in Dy 3+-doped and Dy 3+, Tm 3+-codoped chalcohalide glasses . Optical Materials. 35(8), 1499-1503(2013).

【84】Guo H T, Xu Y T, Chen H Y et al. Near- and mid-infrared emissions of Dy 3+ doped and Dy 3+/Tm 3+co-doped lead cesium iodide modified chalcohalide glasses . Journal of Luminescence. 148, 10-17(2014).

【85】Tang Z Q, Furniss D, Neate N C et al. Dy 3+-doped selenide chalcogenide glasses: influence of Dy 3+ dopant-additive and containment . Journal of the American Ceramic Society. 99(7), 2283-2291(2016).

【86】Shaw L B, Nguyen V Q, Sanghera J S et al. IR supercontinuum generation in As-Se photonic crystal fiber. [C]//Advanced Solid-State Photonics (TOPS), February 6-9, 2005, Vienna, Austria. Washington, DC: OSA. 864-868(2005).

【87】Gattass R R, Shaw L B, Nguyen V Q et al. All-fiber chalcogenide-based mid-infrared supercontinuum source. Optical Fiber Technology. 18(5), 345-348(2012).

【88】Petersen C R, M?ller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics. 8(11), 830-834(2014).

【89】Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Optics Letters. 41(9), 2117-2120(2016).

【90】Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser & Photonics Reviews. 11(2), (2017).

【91】Keirsse J, Boussard-Plédel C, Loréal O et al. IR optical fiber sensor for biomedical applications. Vibrational Spectroscopy. 32(1), 23-32(2003).

【92】Bureau B, Zhang X H, Smektala F et al. Recent advances in chalcogenide glasses[J]. 345/346, 276-283(2004).

【93】Bureau B, Boussard C, Cui S et al. Chalcogenide optical fibers for mid-infrared sensing. Optical Engineering. 53(2), (2014).

【94】Michel K, Bureau B, Pouvreau C et al. Development of a chalcogenide glass fiber device for in situ pollutant detection[J]. 326/327, 434-438(2003).

【95】Michel K, Bureau B, Boussard-Plédel C et al. Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sensors and Actuators B: Chemical. 101(1/2), 252-259(2004).

【96】Wang X M, Yang C F, Dai S X et al. Spectroscopic analysis of ethanol solution detection with Ge15Sb20Se65 chalcogenide glass tapered fiber. Acta Optica Sinica. 38(6), (2018).
王晓美, 杨晨风, 戴世勋 等. 拉锥Ge15Sb20Se65硫系玻璃光纤对乙醇溶液检测的光谱分析研究. 光学学报. 38(6), (2018).

【97】Charpentier F, Bureau B, Troles J et al. Infrared monitoring of underground CO2 storage using chalcogenide glass fibers. Optical Materials. 31(3), 496-500(2009).

【98】Maurugeon S, Bureau B, Boussard-Plédel C et al. Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing. Optical Materials. 33(4), 660-663(2011).

【99】Starecki F, Charpentier F, Doualan J L et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy 3+∶Ga5Ge20Sb10S65 fibers . Sensors and Actuators B: Chemical. 207, 518-525(2015).

【100】Ari J, Starecki F, Boussard-Plédel C et al. Rare-earth-doped chalcogenide glasses for mid-IR gas sensor applications. Proceedings of SPIE. 10100, (2017).

引用该论文

Haitao Guo, Jian Cui, Yantao Xu, Xusheng Xiao. Progress in Preparation and Applications of Low-Loss Chalcogenide Infrared Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170606

郭海涛, 崔健, 许彦涛, 肖旭升. 低损耗硫系红外光纤制备及其应用研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170606

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF