首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170619--1)

基于飞秒激光微孔加工的温度补偿型光纤微流传感器

Temperature Compensated Fiber Optic Microfluidic Sensor Based on the Femtosecond Laser Drilling Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究一种基于激光微孔加工的温度补偿型光纤微流传感器。采用飞秒激光诱导水击穿的方法,在光纤布拉格光栅(FBG)和光纤镀金端面之间,刻写一条垂直于纤芯的均匀微流通道,制作单端反射式传感器,并对光谱进行快速傅里叶分析,可同时获得FBG和法布里-珀罗(F-P)谐振腔的波长信息。实验结果表明:FBG和F-P谐振腔对外界环境温度及微流折射率具有不同的响应特性。通过检测FBG光谱频移可得到温度信息,再从F-P谐振腔光谱中扣除温度的影响部分,即可得到温度补偿的折射率信息。实验得到传感器在中心波长为1550 nm处的折射率灵敏度约为1.2038 nm·RIU -1(RIU为单位折射率),该数值可通过光纤结构进行优化,设计的传感器具有结构简单、操作方便及可实时检测等优点,在生物化学、医学等传感领域中拥有良好的应用前景。

Abstract

A temperature compensated fiber optic microfluidic sensor by using the femtosecond laser drilling technique is realized and studied. A laser-induced water breakdown method is used to fabricate a uniform microfluidic channel perpendicular with the fiber core, between a fiber Bragg grating (FBG) and the gold-coated end face of the fiber. Then a single end reflective sensor is made. By performing the fast Fourier transformation to the reflection spectrum of the fabricated device, both the FBG and Fabry-Perot (F-P) cavity wavelength information can be restored. Experiment shows that the FBG and F-P cavity can have different responses to the external temperature and the microfluidic refractive index. As a result, the temperature information can be sensed by measuring the FBG spectral shift, while the refractive index information can be extracted from the FBG spectral shift with the temperature compensated. In our experiment, the measured refractive index sensitivity of the sensor at a center wavelength of 1550 nm is about 1.2038 nm·RIU -1 (RIU is the unit refractive index). Analysis shows that the sensor performance can be further improved by optimizing the fiber structure. Our device is featured with structural simplification, easy operation, and real-time monitoring, and thus it can have good potential in both biochemical and medical areas.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170619

所属栏目:功能光纤

基金项目:国家自然科学基金、广东省自然科学杰出青年基金;

收稿日期:2019-03-06

修改稿日期:2019-04-15

网络出版日期:2019-09-01

作者单位    点击查看

刘子溪:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州 511443
李元鹏:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州 511443
李杰:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州 511443
武创:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州 511443
关柏鸥:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州 511443

联系人作者:李杰(tjieli@jnu.edu.com)

备注:国家自然科学基金、广东省自然科学杰出青年基金;

【1】Song P, Jing Z G, Li A et al. Refractive index measurement of liquid based on open fiber Fabry-Perot interferometer. Chinese Journal of Lasers. 44(12), (2017).
宋鹏, 荆振国, 李昂 等. 基于光纤开放式法布里-珀罗干涉仪的液体折射率测量. 中国激光. 44(12), (2017).

【2】Ju Y, Liu C, Liao Y et al. Direct fabrication of a microfluidic chip for electrophoresis analysis by water-assisted femtosecond laser writing in porous glass. Chinese Optics Letters. 11(7), (2013).

【3】Lai Y, Zhou K, Zhang L et al. Microchannels in conventional single-mode fibers. Optics Letters. 31(17), 2559-2561(2006).

【4】Marowsky G. Planar waveguides and other confined geometries: theory, technology, production, and novel applications. New York: Springer. 69-83(2014).

【5】Wu D K C, Kuhlmey B T and Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters. 34(3), 322-324(2009).

【6】Gattass R R and Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics. 2(4), 219-225(2008).

【7】Liao Y, Zeng B, Qiao L et al. Threshold effect in femtosecond laser induced nanograting formation in glass: influence of the pulse duration. Applied Physics A. 114(1), 223-230(2014).

【8】Osellame R, Maselli V, Vazquez R M et al. Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Applied Physics Letters. 90(23), (2007).

【9】Ning G Y, Fu G, Shi M et al. Fabrication of optical fiber U-shaped microstructure by femtosecond laser and its application in refractive index sensing. Laser Technology. 41(6), 916-920(2017).
宁贵毅, 傅贵, 史萌 等. 飞秒激光制备光纤U形微结构应用于折射率传感. 激光技术. 41(6), 916-920(2017).

【10】Fu H, Zhou K, Saffari P et al. Microchanneled chirped fiber Bragg grating formed by femtosecond laser-aided chemical etching for refractive index and temperature measurements. IEEE Photonics Technology Letters. 20(19), 1609-1611(2008).

【11】Sugioka K and Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light: Science & Applications. 3(4), (2014).

【12】Wang Y, Wang D N, Yang M et al. Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining. Optics letters. 34(21), 3328-3330(2009).

【13】Zhou K, Yan Z, Zhang L et al. Refractometer based on fiber Bragg grating Fabry-Perot cavity embedded with a narrow microchannel. Optics Express. 19(12), 11769-11779(2011).

【14】Liu Y, Qu S and Li Y. Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown. Applied Physics B. 110(4), 585-589(2013).

【15】Teng L, Zhang H, Dong Y et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Optics Letters. 41(18), 4413-4416(2016).

【16】Jia P, Fang G, Liang T et al. Temperature-compensated fiber-optic Fabry-Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application. Sensors and Actuators B: Chemical. 244, 226-232(2017).

【17】Shi F F, Zhao C L, Xu B et al. Simultaneous measurement of refractive index and temperature based on optical fiber cavity sensor. Acta Photonica Sinica. 45(3), (2016).
时菲菲, 赵春柳, 徐贲 等. 基于光纤微腔的温度及折射率同时测量型传感器. 光子学报. 45(3), (2016).

【18】Li J, Sun L P, Gao S et al. Ultrasensitive refractive-index sensors based on rectangular silica microfibers. Optics Letters. 36(18), 3593-3595(2011).

引用该论文

Zixi Liu, Yuanpeng Li, Jie Li, Chuang Wu, Baiou Guan. Temperature Compensated Fiber Optic Microfluidic Sensor Based on the Femtosecond Laser Drilling Technique[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170619

刘子溪, 李元鹏, 李杰, 武创, 关柏鸥. 基于飞秒激光微孔加工的温度补偿型光纤微流传感器[J]. 激光与光电子学进展, 2019, 56(17): 170619

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF