首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:230003--1)

光波的光线表征

Ray Characterization of Optical Waves

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

新型光束的构建及光束的传输性质是光学领域的重要基础。特别是具有无衍射、自加速或自修复等特殊性质的光束,它们在自由空间和光波导中的传输及应用更是人们关注的热点。虽然波动光学已经发展出相当完备且严格的理论体系,可分析波动方程的解及它们在空间中的演化,但是缺乏直观形象的表征。几何光学则以光线的方式提供一种直观易理解的方法,除了广泛应用于光学系统设计之外,同样可应用于光束设计和光束传输。随着现代几何光学的发展,光线的物理意义被进一步拓展,光线表征光波有了更为广泛的应用。运用光线可直观表征光束的无衍射、自修复和自加速等特性。从基本原理出发,对现代几何光学中光线意义的发展过程、应用及研究现状进行了总结,结合基模高斯光束、无衍射光束、Airy光束、具有螺旋相位面的光束及结构高斯光束这些经典的光束例子,展示了运用光线表征及设计光束的思路。最后讨论了几何光学现存的一些问题及今后可能的研究方向。

Abstract

The design of novel light beams and investigation of their propagation properties are important topics in optics, particularly for beams that are nondiffracting, self-accelerating, or self-repairing. The evolution of these beams in either free-space or a waveguide and their applications have attracted a significant amount of research. Although wave optics has been developed as a rigorous and self-consistent framework, it does not offer intuitive processes for solving optical wave propagation. However, geometrical optics, also known as ray optics, can provide an intuitive and understandable method for analyzing light beam propagation and constructing targeted beam shapes in addition to designing optical systems. With the development of modern geometrical optics, rays have extended their physical meaning and are widely used to characterize optical wave propagation. Furthermore, ray characterization can explain nondiffracting, self-accelerating, and self-repairing properties. In this work, beginning with the fundamental theory of geometrical optics, we review the development, applications, and recent advances of significance of ray in modern ray optics. Meanwhile, some typical beams, such as fundamental-mode Gaussian, non-diffraction, and Airy beams, as well as beams with spiral wavefronts and structured Gaussian beams, have been characterized and designed using rays. Lastly, some challenging problems and future research directions of geometrical optics are discussed.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.230003

所属栏目:综述

基金项目:安徽省自然科学基金、安徽省转化医学研究院科研基金、安徽医科大学博士科研资助基金;

收稿日期:2019-04-26

修改稿日期:2019-06-03

网络出版日期:2019-12-01

作者单位    点击查看

张书赫:安徽医科大学生物医学工程学院, 安徽 合肥 230032
邵梦:安徽医科大学生物医学工程学院, 安徽 合肥 230032
王奕:安徽医科大学生物医学工程学院, 安徽 合肥 230032
段宇平:安徽医科大学生物医学工程学院, 安徽 合肥 230032
周金华:安徽医科大学生物医学工程学院, 安徽 合肥 230032

联系人作者:周金华(zhoujinhua@ahmu.edu.cn)

备注:安徽省自然科学基金、安徽省转化医学研究院科研基金、安徽医科大学博士科研资助基金;

【1】Born M, Wolf E. Principles of optics[M]. UK: , 1999.

【2】Bykov V P, Vainshtein L A. Geometric optics of open resonators [J]. Soviet Physics JETP. 1965, 20(2): 338-344.

【3】Jiang K L, Han X G, Ren K F. Scattering of a Gaussian beam by an elliptical cylinder using the vectorial complex ray model [J]. Journal of the Optical Society of America A. 2013, 30(8): 1548-1556.

【4】Yang P, Liou K N. Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm [J]. Journal of the Optical Society of America A. 1997, 14(9): 2278-2289.

【5】Li X Z. Geometrical-optics approximation of light scattering by particles Xi''''an: [D]. Xidian University. 2009.
李祥震. 粒子光散射的几何光学近似方法研究 [D]. 西安: 西安电子科技大学. 2009.

【6】Arnaud J. Representation of Gaussian beams by complex rays [J]. Applied Optics. 1985, 24(4): 538-543.

【7】Zhang L W. Simulation and analysis of nonlinear effect in high power laser system based on ray-tracing [D]. Hangzhou: Zhejiang University. 2014.
张鲁薇. 基于光线追迹的强激光非线性效应的仿真与分析 [D]. 杭州: 浙江大学. 2014.

【8】Zhu J. Study of characterizing optical free-form surface and ray-tracing model [D]. Nanjing: Nanjing University of Science and Technology. 2012.
朱进. 光学自由曲面面形描述方法和光线追迹模型的研究 [D]. 南京: 南京理工大学. 2012.

【9】Alonso M A, Bandres M A. Generation of nonparaxial accelerating fields through mirrors I: two dimensions [J]. Optics Express. 2014, 22(6): 7124-7132.

【10】Alonso M A, Bandres M A. Generation of nonparaxial accelerating fields through mirrors II: three dimensions [J]. Optics Express. 2014, 22(12): 14738-14749.

【11】McNamara D A, Pistorius C W I, Malherbe J A G. Introduction to the uniform geometrical theory of diffraction [M]. London: Artech House. 1990.

【12】Vainshtein L A. Open resonators with spherical mirrors [J]. Soviet Physics JETP. 1964, 18(2): 471-479.

【13】Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A. 1992, 45(11): 8185-8189.

【14】Durnin J, Miceli J J, Eberly J H. Diffraction-free beams [J]. Physical Review Letters. 1987, 58(15): 1499-1501.

【15】Gutiérrez-Vega J C, Bandres M A. Helmholtz-Gauss waves [J]. Journal of the Optical Society of America A. 2005, 22(2): 289-298.

【16】Berry M V, Balazs N L. Nonspreading wave packets [J]. American Journal of Physics. 1979, 47(3): 264-267.

【17】Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating airy beams [J]. Physical Review Letters. 2007, 99(21): 213901.

【18】Zhang P, Hu Y, Li T C, et al. Nonparaxial Mathieu and Weber accelerating beams [J]. Physical Review Letters. 2012, 109(19): 193901.

【19】Bandres M A, Alonso M A, Kaminer I, et al. Three-dimensional accelerating electromagnetic waves [J]. Optics Express. 2013, 21(12): 13917-13929.

【20】Chen Z G, Xu J J, Hu Y, et al. Control and novel applications of self-accelerating beams [J]. Acta Optica Sinica. 2016, 36(10): 1026009.
陈志刚, 许京军, 胡毅, 等. 自加速光的调控及其新奇应用 [J]. 光学学报. 2016, 36(10): 1026009.

【21】Efremidis N K, Christodoulides D N. Abruptly autofocusing waves [J]. Optics Letters. 2010, 35(23): 4045-4047.

【22】Froehly L, Courvoisier F, Mathis A, et al. Arbitrary accelerating micron-scale caustic beams in two and three dimensions [J]. Optics Express. 2011, 19(17): 16455-16465.

【23】Chremmos I D, Chen Z G, Christodoulides D N, et al. Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics [J]. Physical Review A. 2012, 85(2): 023828.

【24】Davis J A, Cottrell D M, Sand D. Abruptly autofocusing vortex beams [J]. Optics Express. 2012, 20(12): 13302-13310.

【25】Penciu R S, Makris K G, Efremidis N K. Nonparaxial abruptly autofocusing beams [J]. Optics Letters. 2016, 41(5): 1042-1045.

【26】Willner A E, Ren Y X, Xie G D, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017, 375(2087): 20150439.

【27】Wang J, Liu J, Zhao Y F. Research progress of structured light coding/decoding communications [J]. Acta Optica Sinica. 2019, 39(1): 0126013.
王健, 刘俊, 赵一凡. 结构光场编译码通信研究进展 [J]. 光学学报. 2019, 39(1): 0126013.

【28】Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner [J]. Optics Letters. 1997, 22(1): 52-54.

【29】Fahrbach F O, Simon P, Rohrbach A. Microscopy with self-reconstructing beams [J]. Nature Photonics. 2010, 4(11): 780-785.

【30】Garcés-Chávez V. McGloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam [J]. Nature. 2002, 419(6903): 145-147.

【31】Liang Y S, Yao B L, Lei M, et al. Optical micro-manipulation based on spatial modulation of optical fields [J]. Acta Optica Sinica. 2016, 36(10): 1026003.
梁言生, 姚保利, 雷铭, 等. 基于空间光场调控技术的光学微操纵 [J]. 光学学报. 2016, 36(10): 1026003.

【32】Olarte O E, Andilla J, Gualda E J, et al. Light-sheet microscopy: a tutorial [J]. Advances in Optics and Photonics. 2018, 10(1): 111-179.

【33】Li R F, Shi K B. High spatiotemporal imaging based on optical field engineering [J]. Acta Optica Sinica. 2019, 39(1): 0126012.
李润丰, 施可彬. 基于光场调控的高时空分辨率光学成像 [J]. 光学学报. 2019, 39(1): 0126012.

【34】Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets [J]. Nature Photonics. 2008, 2(11): 675-678.

【35】Baumgartl J, Hannappel G M, Stevenson D J, et al. Optical redistribution of microparticles and cells between microwells [J]. Lab on a Chip. 2009, 9(10): 1334-1336.

【36】Moffitt J R, Chemla Y R, Smith S B, et al. Recent advances in optical tweezers [J]. Annual Review of Biochemistry. 2008, 77(1): 205-228.

【37】Woerdemann M, Alpmann C, Esseling M, et al. Advanced optical trapping by complex beam shaping [J]. Laser & Photonics Reviews. 2013, 7(6): 839-854.

【38】Papazoglou D G, Efremidis N K, Christodoulides D N, et al. Observation of abruptly autofocusing waves [J]. Optics Letters. 2011, 36(10): 1842-1844.

【39】Zhang P, Prakash J, Zhang Z, et al. Trapping and guiding microparticles with morphing autofocusing Airy beams [J]. Optics Letters. 2011, 36(15): 2883-2885.

【40】Chen J, Zhan Q W. Tailoring laser focal fields with vectorial optical fields [J]. Acta Optica Sinica. 2019, 39(1): 0126002.
陈建, 詹其文. 矢量光场与激光焦场定制 [J]. 光学学报. 2019, 39(1): 0126002.

【41】Pan Y, Ding J P, Wang H T. Manipulation on novel vector optical fields: introduction, advances and applications [J]. Acta Optica Sinica. 2019, 39(1): 0126003.
潘岳, 丁剑平, 王慧田. 新型矢量光场调控: 简介、进展与应用 [J]. 光学学报. 2019, 39(1): 0126003.

【42】Liu S, Li P, Zhang Y, et al. Transmission and control of polarization modulation light filed in free space [J]. Acta Optica Sinica. 2016, 36(10): 1026001.
刘圣, 李鹏, 章毅, 等. 自由空间中偏振调制光场的传输及控制 [J]. 光学学报. 2016, 36(10): 1026001.

【43】Liu H L, Hu Z H, Xia J, et al. Generation and applications of non-diffraction beam [J]. Acta Physica Sinica. 2018, 67(21): 214204.
刘会龙, 胡总华, 夏菁, 等. 无衍射光束的产生及其应用 [J]. 物理学报. 2018, 67(21): 214204.

【44】Yu X H, Yao B L, Lei M, et al. Generation and three-dimensional characterization of complex nondiffracting optical beams [J]. Acta Physica Sinica. 2015, 64(24): 244203.
于湘华, 姚保利, 雷铭, 等. 无衍射特殊光束的产生与三维表征 [J]. 物理学报. 2015, 64(24): 244203.

【45】Sidick E, Collins S D, Knoesen A. Trapping forces in a multiple-beam fiber-optic trap [J]. Applied Optics. 1997, 36(25): 6423-6433.

【46】Kline M. An asymptotic solution of Maxwell''''s equations [J]. Communications on Pure and Applied Mathematics. 1951, 4(2/3): 225-262.

【47】Luneburg R K. Mathematical theory of optics[M]. USA: , 1966.

【48】Keller J B, Streifer W. Complex rays with an application to Gaussian beams [J]. Journal of the Optical Society of America. 1971, 61(1): 40-43.

【49】Deschamps G A. Gaussian beam as a bundle of complex rays [J]. Electronics Letters. 1971, 7(23): 684-685.

【50】Kravtsov Y A, Forbes G W, Asatryan A A. I theory and applications of complex rays [M]. ∥Wolf E. Progress in optics. New York: Elsevier. 1999, 39: 1-62.

【51】Herloski R, Marshall S, Antos R. Gaussian beam ray-equivalent modeling and optical design [J]. Applied Optics. 1983, 22(8): 1168-1174.

【52】Landesman B T, Barrett H H. Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation [J]. Journal of the Optical Society of America A. 1988, 5(10): 1610-1619.

【53】Landesman B T. Geometrical representation of the fundamental mode of a Gaussian beam in oblate spheroidal coordinates [J]. Journal of the Optical Society of America A. 1989, 6(1): 5-17.

【54】Tycho A, J?rgensen T M, Yura H T, et al. Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems [J]. Applied Optics. 2002, 41(31): 6676-6691.

【55】Zhang S H, Zhou J H, Gong L. Skew line ray model of nonparaxial Gaussian beam [J]. Optics Express. 2018, 26(3): 3381-3393.

【56】Kay I, Keller J B. Asymptotic evaluation of the field at a caustic [J]. Journal of Applied Physics. 1954, 25(7): 876-883.

【57】Ludwig D. Wave propagation near a smooth caustic [J]. Bulletin of the American Mathematical Society. 1965, 71(5): 776-780.

【58】Berry M V, Upstill C. IV catastrophe optics: morphologies of caustics and their diffraction patterns [M]. ∥Wolf E. Progress in optics. New York: Elsevier. 1980, 18: 257-346.

【59】Forbes G W, Alonso M A. Using rays better. I. Theory for smoothly varying media [J]. Journal of the Optical Society of America A. 2001, 18(5): 1132-1145.

【60】Ouellette P é. Geometric optics of a refringent sphere illuminated by a point source: caustics, wavefronts, and zero phase-fronts for every rainbow “k” order [J]. Journal of the Optical Society of America A. 2018, 35(1): 1-11.

【61】Berry M V. Uniform approximation a new concept in wave theory [J]. Science Progress. 1969, 57(225): 43-64.

【62】Ludwig D. Wave propagation near a smooth caustic [M]. ∥Brown J. Electromagnetic wave theory. New York: Elsevier. 1967, 915-917.

【63】Anguiano-Morales M, Martínez A. Iturbe-Castillo M D, et al. Self-healing property of a caustic optical beam [J]. Applied Optics. 2007, 46(34): 8284-8290.

【64】Kaganovsky Y, Heyman E. Wave analysis of Airy beams [J]. Optics Express. 2010, 18(8): 8440-8452.

【65】Popov M M. A new method of computation of wave fields using Gaussian beams [J]. Wave Motion. 1982, 4(1): 85-97.

【66】White B S, Norris A, Bayliss A, et al. Some remarks on the Gaussian beam summation method [J]. Geophysical Journal International. 1987, 89(2): 579-636.

【67】Norris A N. Complex point-source representation of real point sources and the Gaussian beam summation method [J]. Journal of the Optical Society of America A. 1986, 3(12): 2005-2010.

【68】Goodman J W. Introduction to Fourier optics [M]. New York: McGraw-Hill. 1968.

【69】Berry M V. Semi-classical mechanics in phase space: a study of Wigner''''s function [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1977, 287(1343): 237-271.

【70】Alonso M A. Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles [J]. Advances in Optics and Photonics. 2011, 3(4): 272-365.

【71】Forbes G W, Alonso M A. What on earth is a ray and how can we use them best? [J]. Proceedings of SPIE. 1998, 3482: 22-31.

【72】Alonso M A, Forbes G W. Phase-space distributions for high-frequency fields [J]. Journal of the Optical Society of America A. 2000, 17(12): 2288-2300.

【73】de Bruijn N G. Uncertainty principles in Fourier analysis [J]. Inequalities. 1967, 2: 57-71.

【74】Alonso M A, Forbes G W. Stable aggregates of flexible elements give a stronger link between rays and waves [J]. Optics Express. 2002, 10(16): 728-739.

【75】Alonso M A, Forbes G W. Using rays better. II. Ray families to match prescribed wave fields [J]. Journal of the Optical Society of America A. 2001, 18(5): 1146-1159.

【76】Alonso M A, Forbes G W. Using rays better. III. Error estimates and illustrative applications in smooth media [J]. Journal of the Optical Society of America A. 2001, 18(6): 1357-1370.

【77】Forbes G W. Using rays better. IV. Theory for refraction and reflection [J]. Journal of the Optical Society of America A. 2001, 18(10): 2557-2564.

【78】Alonso M A, Dennis M R. Ray-optical Poincaré sphere for structured Gaussian beams [J]. Optica. 2017, 4(4): 476-486.

【79】Bareza N D, Hermosa N. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space [J]. Scientific Reports. 2016, 6: 26842.

【80】Bouchard F, Harris J, Mand H, et al. Observation of subluminal twisted light in vacuum [J]. Optica. 2016, 3(4): 351-354.

【81】Marcuse D. Light transmission optics [M]. 2nd ed. New York: Van Nostrand Reinhold Company. 1972.

【82】Greenfield E, Segev M, Walasik W, et al. Accelerating light beams along arbitrary convex trajectories [J]. Physical Review Letters. 2011, 106(21): 213902.

【83】Penciu R S, Paltoglou V, Efremidis N K. Closed-form expressions for nonparaxial accelerating beams with pre-engineered trajectories [J]. Optics Letters. 2015, 40(7): 1444-1447.

【84】Epstein I, Arie A. Arbitrary bending plasmonic light waves [J]. Physical Review Letters. 2014, 112(2): 023903.

【85】Zhao Z Y, Xie C, Ni D D, et al. Scaling the abruptly autofocusing beams in the direct-space [J]. Optics Express. 2017, 25(24): 30598-30605.

【86】Greynolds A W. Propagation of generally astigmatic Gaussian beams along skew ray paths [J]. Proceedings of SPIE. 1986, 560: 33-51.

【87】Shi B Y, Meng Z, Wang L Z, et al. Monte Carlo modeling of human tooth optical coherence tomography imaging [J]. Journal of Optics. 2013, 15(7): 075304.

【88】Kaganovsky Y, Heyman E. Nonparaxial wave analysis of three-dimensional Airy beams [J]. Journal of the Optical Society of America A. 2012, 29(5): 671-688.

【89】Zhang Z Y, Levoy M. Wigner distributions and how they relate to the light field . [C]∥2009 IEEE International Conference on Computational Photography (ICCP), April 16-17, 2009, San Francisco, CA, USA. New York: IEEE. 2009, 11499058.

【90】Poto ek V, Barnett S M. Generalized ray optics and orbital angular momentum carrying beams [J]. New Journal of Physics. 2015, 17(10): 103034.

【91】Zhu Q Z, Wu F T, He X. Generation of hollow beams through focusing J0-correlated schell-model beams with axicon [J]. Acta Optica Sinica. 2016, 36(10): 1026022.
朱清智, 吴逢铁, 何西. 轴棱锥聚焦贝塞尔-谢尔模型光束产生空心光束 [J]. 光学学报. 2016, 36(10): 1026022.

【92】Li D, Wu F T, Xie X X. A novel method of generating qausi-non-diffracting Mathieu beam based on axicon [J]. Acta Physica Sinica. 2014, 63(15): 152401.
李冬, 吴逢铁, 谢晓霞. 基于轴棱锥产生近似无衍射Mathieu光束的新方法 [J]. 物理学报. 2014, 63(15): 152401.

【93】Alvarez-Elizondo M B, Rodríguez-Masegosa R, Gutiérrez-Vega J C. Generation of Mathieu-Gauss modes with an axicon-based laser resonator [J]. Optics Express. 2008, 16(23): 18770-18775.

【94】Ci?már T, Zemánek P. High quality quasi-Bessel beam generated by round-tip axicon [J]. Optics Express. 2008, 16(17): 12688-12700.

【95】Vaveliuk P, Martínez-Matos ó, Ren Y X, et al. Dual behavior of caustic optical beams facing obstacles [J]. Physical Review A. 2017, 95(6): 063838.

【96】Turnbull G A, Robertson D A, Smith G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate [J]. Optics Communications. 1996, 127(4/5/6): 183-188.

【97】Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses [J]. Optics Express. 2004, 12(15): 3548-3553.

【98】Kotlyar V V, Almazov A A, Khonina S N, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate [J]. Journal of the Optical Society of America A. 2005, 22(5): 849-861.

【99】Eggleston M, Godat T, Munro E, et al. Ray transfer matrix for a spiral phase plate [J]. Journal of the Optical Society of America A. 2013, 30(12): 2526-2530.

【100】Zhang S H, Shao M, Zhou J H. Structured beam designed by ray-optical Poincaré sphere method and its propagation properties [J]. Acta Physica Sinica. 2018, 67(22): 224204.
张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究 [J]. 物理学报. 2018, 67(22): 224204.

【101】Alonso M A. Ray-based diffraction calculations using stable aggregates of flexible elements [J]. Journal of the Optical Society of America A. 2013, 30(6): 1223-1235.

【102】Keller J B. Geometrical theory of diffraction [J]. Journal of the Optical Society of America. 1962, 52(2): 116-130.

【103】Kumar B S, Ranganath S. Geometrical theory of diffraction [J]. Pramana. 1991, 37(6): 457-488.

【104】Felsen L B. Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams [J]. Geophysical Journal International. 1984, 79(1): 77-88.

【105】Senior T B A, Uslenghi P L E. Experimental detection of the edge-diffraction cone [J]. Proceedings of the IEEE. 1972, 60(11): 1448.

【106】Sun J G. High-frequency asymptotic scattering theories and their applications in numerical modeling and imaging of geophysical fields: an overview of the research history and the state-of-the-art, and some new developments [J]. Journal of Jilin University(Earth Science Edition). 2016, 46(4): 1231-1259.
孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用: 研究历史与研究现状概述以及若干新进展 [J]. 吉林大学学报(地球科学版). 2016, 46(4): 1231-1259.

引用该论文

Zhang Shuhe,Shao Meng,Wang Yi,Duan Yuping,Zhou Jinhua. Ray Characterization of Optical Waves[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230003

张书赫,邵梦,王奕,段宇平,周金华. 光波的光线表征[J]. 激光与光电子学进展, 2019, 56(23): 230003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF