首页 > 论文 > 激光与光电子学进展 > 56卷 > 24期(pp:240002--1)

超分辨光学显微的成像原理及应用进展

Imaging Principles and Applications of Super-Resolution Optical Microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

突破了衍射极限的超分辨光学显微成像通常被用于观测亚细胞的结构特性及其相互作用,对于研究基因组和攻克重大疾病具有重要意义。首先分别介绍了4种典型的超分辨显微成像技术的工作原理,然后阐述了多色荧光成像和三维成像等观测手段的研究进展,最后综述了近年来国内外超分辨光学成像在细胞活动观测、细菌细胞研究和细胞骨架观测中的应用现状。文中指出,影响成像质量的主要因素包括荧光蛋白较差的光稳定性、低的光活化速率以及弱的荧光强度等。随着上述问题的解决,超分辨光学成像将在厚样品三维成像、多色荧光成像和活细胞快速成像等方面得到广泛应用,最终推动生命科学、材料科学的发展。

Abstract

Ultra-resolution optical microscopy, which breaks through the diffraction limit, is typically used to observe structural characteristics and interactions of subcells. This method has great significance for the study of genomes and tackling major diseases. This paper begins by introducing the working principles of four typical super-resolution microscopic imaging techniques. Subsequently, research progress in the areas of multi-color fluorescence imaging and three-dimensional imaging is emphasized. Finally, recent applications of super-resolution optical imaging for cell activity observation, bacterial cell research, and cytoskeleton observation are reviewed both domestically and abroad. The main factors reportedly affecting the imaging quality are poor light stability of the fluorescent protein, low light activation rate, and weak fluorescence intensity. Solution of the above problems will lead to the widespread use of super-resolution optical imaging for the three-dimensional imaging of thick samples, multi-color fluorescence imaging, and fast imaging of living cells, ultimately furthering the development of life science and materials science.

广告组2 - 920飞秒 +合束激光器
补充资料

中图分类号:Q27; Q63

DOI:10.3788/LOP56.240002

所属栏目:综述

基金项目:吉林省重点科技计划;

收稿日期:2019-04-15

修改稿日期:2019-06-05

网络出版日期:2019-12-01

作者单位    点击查看

付芸:长春理工大学光电工程学院, 吉林 长春 130022
王天乐:长春理工大学光电工程学院, 吉林 长春 130022
赵森:长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:付芸(linda_fy@cust.edu.cn)

备注:吉林省重点科技计划;

【1】Hell S W, Sahl S J, Bates M, et al. The 2015 super-resolution microscopy roadmap [J]. Journal of Physics D: Applied Physics. 2015, 48(44): 443001.

【2】Chi K R. Super-resolution microscopy: breaking the limits [J]. Nature Methods. 2009, 6(1): 15-18.

【3】Ji W, Xu T, Liu B. Super-resolution fluorescent microscopy: a brief introduction to the Nobel Prize in Chemistry 2014 [J]. Chinese Journal of Nature. 2014, 36(6): 404-408.
纪伟, 徐涛, 刘贝. 光学超分辨荧光显微成像: 2014年诺贝尔化学奖解析 [J]. 自然杂志. 2014, 36(6): 404-408.

【4】Qin P W, Parlak M, Kuscu C, et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9 [J]. Nature Communications. 2017, 8: 14725.

【5】Samanta S, Gong W J, Li W, et al. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): recent highlights and future possibilities [J]. Coordination Chemistry Reviews. 2019, 380: 17-34.

【6】Almada P, Culley S, Henriques R. PALM and STORM: into large fields and high-throughput microscopy with sCMOS detectors [J]. Methods. 2015, 88: 109-121.

【7】Bernhem K, Blom H, Brismar H. Quantification of endogenous and exogenous protein expressions of Na, K-ATPase with super-resolution PALM/STORM imaging [J]. PLoS One. 2018, 13(4): e0195825.

【8】Tam J, Merino D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods [J]. Journal of Neurochemistry. 2015, 135(4): 643-658.

【9】Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science. 2006, 313(5793): 1642-1645.

【10】Hess S T. Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy [J]. Biophysical Journal. 2006, 91(11): 4258-4272.

【11】Rust M J, Bates M, Zhuang X W. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution [J]. Nature Methods. 2006, 3(10): 793-795.

【12】Dempsey G T, Vaughan J C, Chen K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging [J]. Nature Methods. 2011, 8(12): 1027-1036.

【13】Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy [J]. Annual Review of Biochemistry. 2009, 78(1): 993-1016.

【14】Sydor A M, Czymmek K J, Puchner E M, et al. Super-resolution microscopy: from single molecules to supramolecular assemblies [J]. Trends in Cell Biology. 2015, 25(12): 730-748.

【15】Chéreau R, T?nnesen J, N?gerl U V. STED microscopy for nanoscale imaging in living brain slices [J]. Methods. 2015, 88: 57-66.

【16】Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy [J]. Nature Methods. 2018, 15(3): 173-182.

【17】Yu W T, Ji Z H, Dong D S, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy [J]. Laser & Photonics Reviews. 2016, 10(1): 147-152.

【18】Vicidomini G, Moneron G, Han K Y, et al. Sharper low-power STED nanoscopy by time gating [J]. Nature Methods. 2011, 8(7): 571-573.

【19】Chen J L, Qiu C M, You M H, et al. Structured illumination microscopy and its new developments [J]. Journal of Innovative Optical Health Sciences. 2016, 9(3): 1630010.

【20】Curd A, Cleasby A, Makowska K, et al. Construction of an instant structured illumination microscope [J]. Methods. 2015, 88: 37-47.

【21】Heintzmann R, Huser T. Super-resolution structured illumination microscopy [J]. Chemical Reviews. 2017, 117(23): 13890-13908.

【22】Saxena M, Eluru G, Gorthi S S. Structured illumination microscopy [J]. Advances in Optics and Photonics. 2015, 7(2): 241-275.

【23】Huang Y J, Zhu D Z, Jin L H, et al. Laser scanning saturated structured illumination microscopy based on phase modulation [J]. Optics Communications. 2017, 396: 261-266.

【24】Wei F F, Ponsetto J L, Liu Z W. Plasmonic structured illumination microscopy[M]. //Liu Z W. Plasmonics and super-resolution imaging. New York: , 2017, 127-163.

【25】Li D, Shao L, Chen B C, cytoskeletal dynamics[J]. Science, et al. 349(6251): aab3500 . 2015.

【26】Chmyrov A, Keller J, Grotjohann T, et al. Nanoscopy with more than 100, 000 ‘doughnuts’ [J]. Nature Methods. 2013, 10(8): 737-740.

【27】Hell S W, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy [J]. Current Opinion in Neurobiology. 2004, 14(5): 599-609.

【28】Schnitzbauer J, Strauss M T, Schlichthaerle T, et al. Super-resolution microscopy with DNA-PAINT [J]. Nature Protocols. 2017, 12(6): 1198-1228.

【29】Dertinger T, Colyer R, Vogel R, et al. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI) [J]. Optics Express. 2010, 18(18): 18875-18885.

【30】Zeng Z P. Fluorescence fluctuation-based super-resolution nanoscopy [J]. Chinese Journal of Lasers. 2018, 45(3): 0307009.
曾志平. 基于荧光随机涨落的超分辨显微成像 [J]. 中国激光. 2018, 45(3): 0307009.

【31】Shroff H, Galbraith C G, Galbraith J A, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes [J]. Proceedings of the National Academy of Sciences. 2007, 104(51): 20308-20313.

【32】Bates M, Dempsey G T, Chen K H, et al. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection [J]. ChemPhysChem. 2012, 13(1): 99-107.

【33】Bintu B, Mateo L J, Su J H, et al. 362(6413): eaau1783 [J]. cooperative interactions in single cells. Science. 2018.

【34】Xu J Q, Tehrani K F, Kner P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy [J]. ACS Nano. 2015, 9(3): 2917-2925.

【35】G?ttfert F, Pleiner T, Heine J, et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent [J]. Proceedings of the National Academy of Sciences. 2017, 114(9): 2125-2130.

【36】Oracz J, Westphal V, Radzewicz C, et al. Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore [J]. Scientific Reports. 2017, 7: 11354.

【37】Jungmann R, Avenda?o M S, Woehrstein J B, et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT [J]. Nature Methods. 2014, 11(3): 313-318.

【38】Legant W R, Shao L, Grimm J B, et al. High-density three-dimensional localization microscopy across large volumes [J]. Nature Methods. 2016, 13(4): 359-365.

【39】Wang Y L, Kanchanawong P. Three-dimensional super resolution microscopy of F-actin filaments by interferometric photoactivated localization microscopy (iPALM) Journal of Visualized Experiments[J]. 0, 2016(118): e54774.

【40】Buss J, Coltharp C, Shtengel G, et al. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics [J]. PLoS Genetics. 2015, 11(4): e1005128.

【41】Kraus F, Miron E, Demmerle J, et al. Quantitative 3D structured illumination microscopy of nuclear structures [J]. Nature Protocols. 2017, 12(5): 1011-1028.

【42】Hell S. Stelzer E H K. Properties of a 4Pi confocal fluorescence microscope [J]. Journal of the Optical Society of America A. 1992, 9(12): 2159-2166.

【43】Huang F, Sirinakis G, Allgeyer E S, et al. Ultra-high resolution 3D imaging of whole cells [J]. Cell. 2016, 166(4): 1028-1040.

【44】von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking [J]. Chemical Reviews. 2017, 117(11): 7244-7275.

【45】Holtzer L, Meckel T, Schmidt T. Nanometric three-dimensional tracking of individual quantum dots in cells [J]. Applied Physics Letters. 2007, 90(5): 053902.

【46】Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells [J]. Nature Methods. 2011, 8(6): 499-505.

【47】Xu J Q, Ma H Q. 81(1): 12 . 46.1-12. 2017, 46: 27.

【48】Pavani S R P, Thompson M A, Biteen J S, et al. . Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function [J]. Proceedings of the National Academy of Sciences. 2009, 106(9): 2995-2999.

【49】Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function [J]. Nature Photonics. 2014, 8(4): 302-306.

【50】Baddeley D, Cannell M B, Soeller C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil [J]. Nano Research. 2011, 4(6): 589-598.

【51】Veeraraghavan R, Gourdie R G. Stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA) for quantitative nanoscale assessment of spatial protein organization [J]. Molecular Biology of the Cell. 2016, 27(22): 3583-3590.

【52】Abrahamsson S, Chen J J, Hajj B, et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy [J]. Nature Methods. 2013, 10(1): 60-63.

【53】Hajj B, Wisniewski J. ElBeheiry M, et al. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy [J]. Proceedings of the National Academy of Sciences. 2014, 111(49): 17480-17485.

【54】Vangindertael J, Beets I, Rocha S, et al. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM [J]. Scientific Reports. 2015, 5: 13532.

【55】Xie X L, Chen R, Zhao Y X, et al. Combination light-sheet illumination with super-resolution three-dimensional fluorescence microimaging [J]. Chinese Journal of Lasers. 2018, 45(3): 0307006.
谢新林, 陈蓉, 赵宇轩, 等. 结合光片照明与超分辨的三维荧光显微成像 [J]. 中国激光. 2018, 45(3): 0307006.

【56】Patton B R, Burke D, Owald D, et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics [J]. Optics Express. 2016, 24(8): 8862-8876.

【57】Gustavsson A K, Petrov P N, Lee M Y, et al. 3D single-molecule super-resolution microscopy with a tilted light sheet [J]. Nature Communications. 2018, 9: 123.

【58】Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy [J]. Science. 2018, 361(6405): 880-887.

【59】Nienhaus K, Nienhaus G U. Where do we stand with super-resolution optical microscopy? [J]. Journal of Molecular Biology. 2016, 428(2): 308-322.

【60】Wegner W, Ilgen P, Gregor C, et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins [J]. Scientific Reports. 2017, 7: 11781.

【61】D''''Este E. Kamin D, Balzarotti F, et al. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy [J]. Proceedings of the National Academy of Sciences. 2017, 114(2): E191-E199.

【62】Boettiger A N, Bintu B, Moffitt J R, et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states [J]. Nature. 2016, 529(7586): 418-422.

【63】Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling [J]. Nature Methods. 2012, 9(7): 743-748.

【64】Morozova K S, Piatkevich K D, Gould T J, et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy [J]. Biophysical Journal. 2010, 99(2): L13-L15.

【65】Lukinavi ius G, Umezawa K, Olivier N, et al. . A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins [J]. Nature Chemistry. 2013, 5(2): 132-139.

【66】Plass T, Schraidt O, et al. . Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy [J]. Angewandte Chemie International Edition. 2014, 53(8): 2245-2249.

【67】Godin A G, Lounis B, Cognet L. Super-resolution microscopy approaches for live cell imaging [J]. Biophysical Journal. 2014, 107(8): 1777-1784.

【68】Jans D C, Wurm C A, Riedel D, et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria [J]. Proceedings of the National Academy of Sciences. 2013, 110(22): 8936-8941.

【69】Westphal V. Lauterbach A,di Nicola A, et al. Dynamic far-field fluorescence nanoscopy [J]. New Journal of Physics. 2007, 9(12): 435.

【70】Bowler M, Kong D, Sun S F, et al. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy [J]. Nature Communications. 2019, 10: 993.

【71】Deng Y Y. Fluorescence super resolution microscopic imaging for the study of oocyte meiosis [D]. Shenzhen: Shenzhen University. 2017.
邓月月. 荧光超分辨显微成像用于研究卵母细胞减数分裂过程 [D]. 深圳: 深圳大学. 2017.

【72】Hanne J, Falk H J, G?rlitz F, et al. STED nanoscopy with fluorescent quantum dots [J]. Nature Communications. 2015, 6: 7127.

【73】Honigmann A, Mueller V, Ta H S, et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells [J]. Nature Communications. 2014, 5: 5412.

【74】Dudok B, Barna L, Ledri M, et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling [J]. Nature Neuroscience. 2015, 18(1): 75-86.

【75】Jacq M, Adam V, Bourgeois D, et al. Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy [J]. mBio. 2015, 6(4): e01108-15.

【76】Laplante C, Huang F, Tebbs I R, et al. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast [J]. Proceedings of the National Academy of Sciences. 2016, 113(40): E5876-E5885.

【77】Holden S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy [J]. Current Opinion in Microbiology. 2018, 43: 84-91.

【78】Holden S J, Pengo T, Meibom K L, et al. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization [J]. Proceedings of the National Academy of Sciences. 2014, 111(12): 4566-4571.

【79】Strauss M P. Liew A T F, Turnbull L, et al. 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis [J]. PLoS Biology. 2012, 10(9): e1001389.

【80】Chen M H, Liu S Y, Li W, et al. Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes [J]. ACS Nano. 2016, 10(9): 8482-8490.

【81】Wang W, Li G W, Chen C, et al. Chromosome organization by a nucleoid-associated protein in live bacteria [J]. Science. 2011, 333(6048): 1445-1449.

【82】Xia Y, Fu B M. Investigation of endothelial surface glycocalyx components and ultrastructure by single molecule localization microscopy: stochastic optical reconstruction microscopy (STORM) [J]. The Yale Journal of Biology and Medicine. 2018, 91(3): 257-266.

【83】Wegel E, G?hler A, Lagerholm B C, et al. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: a practical comparison [J]. Scientific Reports. 2016, 6: 27290.

【84】Butkevich A N, Mitronova G Y, Sidenstein S C, et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells [J]. Angewandte Chemie International Edition. 2016, 55(10): 3290-3294.

【85】Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton [J]. Nature Methods. 2012, 9(2): 185-188.

【86】Suleiman H Y, Roth R, Jain S, et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy [J]. JCI Insight. 2017, 2(16): e94137.

【87】Unsain N, Bordenave M D, Martinez G F, et al. Author correction: remodeling of the actin/spectrin membrane-associated periodic skeleton, growth cone collapse and F-actin decrease during axonal degeneration [J]. Scientific Reports. 2018, 8: 3007.

【88】Han B R, Zhou R B, Xia C L, et al. Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons [J]. Proceedings of the National Academy of Sciences. 2017, 114(32): E6678-E6685.

【89】Pan L T, Yan R, Li W, et al. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton [J]. Cell Reports. 2018, 22(5): 1151-1158.

【90】Unsain N, Stefani F D, Cáceres A. The actin/spectrin membrane-associated periodic skeleton in neurons [J]. Frontiers in Synaptic Neuroscience. 2018, 10: 10.

【91】Wen G, Li S M, Yang X B, et al. Super-resolution fluorescence microscopy system by structured light illumination based on laser interference [J]. Acta Optica Sinica. 2017, 37(3): 0318003.
文刚, 李思黾, 杨西斌, 等. 基于激光干涉的结构光照明超分辨荧光显微镜系统 [J]. 光学学报. 2017, 37(3): 0318003.

【92】Yuan S Y. STORM super resolution imaging of cytoskeleton [D]. Shenzhen: Shenzhen University. 2017.
袁淑怡. 细胞骨架的STORM超分辨成像研究 [D]. 深圳: 深圳大学. 2017.

【93】D''''Este E. Kamin D, G?ttfert F, et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons [J]. Cell Reports. 2015, 10(8): 1246-1251.

引用该论文

Fu Yun,Wang Tianle,Zhao Sen. Imaging Principles and Applications of Super-Resolution Optical Microscopy[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240002

付芸,王天乐,赵森. 超分辨光学显微的成像原理及应用进展[J]. 激光与光电子学进展, 2019, 56(24): 240002

被引情况

【1】肖文,吴天琦,李仁剑,唐黎,陈玲玲. 基于并行计算优化的WindSTORM PLUS算法. 中国激光, 2020, 47(6): 607001--1

【2】陈宇宸,李传康,郝翔,匡翠方,刘旭. 点扫描移频超分辨显微成像进展. 激光与光电子学进展, 2020, 57(18): 180001--1

【3】于湘华,刘超,柏晨,杨延龙,彭彤,但旦,闵俊伟,姚保利. 光片荧光显微成像技术及应用进展. 激光与光电子学进展, 2020, 57(10): 100001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF