首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:151004--1)

基于改进的引导滤波和双通道脉冲耦合神经网络的医学图像融合

Medical Image Fusion Based on Improved Guided Filtering and Dual-Channel Pulse Coupled Neural Networks

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为解决多模医学图像融合边缘模糊,互补信息不充分的问题,提出一种基于改进的引导滤波和双通道脉冲耦合神经网络(PCNN)的医学图像融合算法。利用非下采样轮廓波对医学源图像进行变换,采用双通道PCNN融合图像的低频部分,将改进的拉普拉斯能量和作为双通道PCNN的激励输入,将改进的空间频率作为链接强度;采用改进的引导滤波算法融合图像的高频部分。融合后的低频和高频信号进行非下采样轮廓波变换逆变换即可得到融合图像。实验结果表明,多模医学图像融合中,所提算法有效保留了源图像的特征信息,并在互信息量、信息熵、空间频率等客观评价指标上取得了良好的效果。

Abstract

This study proposes a medical image fusion algorithm based on improved guided filtering and dual-channel pulse coupled neural networks (PCNN) to solve the problems of blurring edge and complementary information insufficiency in current multimodal medical image fusion. First, medical source images are transformed with a non-subsampled contourlet, and the dual-channel PCNN is used to fuse the low-frequency sub-bands. The sum of the modified Laplacian energy is used as the input of the dual-channel PCNN, and the improved spatial frequency is considered as the connection strength. Then, improved guided filtering is used to fuse the high-frequency sub-bands of the source images. Finally, the fusion of the low-frequency sub-bands and that of the high-frequency sub-bands are inverted by the non-subsampled contourlet transforming to obtain the fused image. Experimental results show that the proposed algorithm effectively retains the characteristic information of the source images and objectively evaluates the mutual information, information entropy, and spatial frequency.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.151004

所属栏目:图像处理

基金项目:国家自然科学基金(61672265);

收稿日期:2019-02-19

修改稿日期:2019-03-04

网络出版日期:2019-08-01

作者单位    点击查看

王建:江南大学物联网工程学院, 江苏 无锡 214122
吴锡生:江南大学物联网工程学院, 江苏 无锡 214122

联系人作者:吴锡生(wxs@jiangnan.edu.cn)

备注:国家自然科学基金(61672265);

【1】Johnson J L and Padgett M L. PCNN models and applications. IEEE Transactions on Neural Networks. 10(3), 480-498(1999).

【2】Ganasala P and Kumar V. Feature-motivated simplified adaptive PCNN-based medical image fusion algorithm in NSST domain. Journal of Digital Imaging. 29(1), 73-85(2016).

【3】Li M L, Li Y J, Wang H M et al. Fusion algorithm of infrared and visible images based on NSCT and PCNN. Opto-Electronics Engineering. 37(6), 90-95(2010).
李美丽, 李言俊, 王红梅 等. 基于NSCT和PCNN的红外与可见光图像融合方法. 光电工程. 37(6), 90-95(2010).

【4】Zhao D, Dai W Z and Li J F. Medical image fusion based on NSST and improved PCNN. Journal of Optoelectronics·Laser. 29(1), 95-104(2018).
赵丹, 戴文战, 李俊峰. 基于NSST和改进PCNN的医学图像融合. 光电子·激光. 29(1), 95-104(2018).

【5】He K M, Sun J and Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence. 35(6), 1397-1409(2013).

【6】Li S T, Kang X D and Hu J W. Image fusion with guided filtering. IEEE Transactions on Image Processing. 22(7), 2864-2875(2013).

【7】Zhu D R, Xu L, Wang F B et al. Multi-focus image fusion algorithm based on fast finite shearlet transform and guided filter. Laser & Optoelectronics Progress. 55(1), (2018).
朱达荣, 许露, 汪方斌 等. 基于快速有限剪切波变换与引导滤波的多聚焦图像融合算法. 激光与光电子学进展. 55(1), (2018).

【8】Wang R R and Yang Y D. Image fusion algorithm based on complex shearlet transform coupled with improved guided filtering. Journal of Electronic Measurement and Instrumentation. 32(5), 126-133(2018).
王荣荣, 杨亚东. 基于复Shearlet变换耦合改进引导滤波的图像融合算法. 电子测量与仪器学报. 32(5), 126-133(2018).

【9】Bavirisetti D P, Kollu V, Gang X et al. Fusion of MRI and CT images using guided image filter and image statistics. International Journal of Imaging Systems and Technology. 27(3), 227-237(2017).

【10】Li J, Yang Y C, Dang J W et al. Multi-focus image fusion based on NSCT and guided filtering. Laser & Optoelectronics Progress. 55(7), (2018).
李娇, 杨艳春, 党建武 等. 基于NSCT与引导滤波的多聚焦图像融合. 激光与光电子学进展. 55(7), (2018).

【11】Guo X P, Duan X H and Xia J X. Application and research based on two-channel PCNN. Science Technology and Engineering. 12(34), 9225-9233(2012).
郭新榀, 段先华, 夏加星. 基于双通道脉冲耦合神经网络的应用研究. 科学技术与工程. 12(34), 9225-9233(2012).

【12】Bhatnagar G. Wu Q M J, Liu Z. Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Transactions on Multimedia. 15(5), 1014-1024(2013).

【13】Yang Y, Tong S, Huang S Y et al. Multifocus image fusion based on NSCT and focused area detection. IEEE Sensors Journal. 15(5), 2824-2838(2015).

【14】Ding S F, Zhao X Y, Xu H et al. NSCT-PCNN image fusion based on image gradient motivation. IET Computer Vision. 12(4), 377-383(2018).

【15】Wang H Q. Image fusion visible and infrared image based on NSCT and neighborhood features. Information & Communications. 31(4), 17-20(2018).
王焕清. 结合NSCT和邻域特性的红外与可见光图像融合. 信息通信. 31(4), 17-20(2018).

【16】Yi W, Zeng Y and Yuan Z. Fusion of GF-3 SAR and optical images based on the nonsubsampled contourlet transform. Acta Optica Sinica. 38(11), (2018).
易维, 曾湧, 原征. 基于NSCT变换的高分三号SAR与光学图像融合. 光学学报. 38(11), (2018).

【17】Feng Y, He X S and Yang X S. Infrared and visual image fusion based on NSCT and hybrid particle swarm optimization. Electronics Optics & Control. 25(1), 23-27(2018).
冯颖, 贺兴时, 杨新社. 基于NSCT和混合粒子群算法的红外与可见光图像融合. 电光与控制. 25(1), 23-27(2018).

引用该论文

Wang Jian,Wu Xisheng. Medical Image Fusion Based on Improved Guided Filtering and Dual-Channel Pulse Coupled Neural Networks[J]. Laser & Optoelectronics Progress, 2019, 56(15): 151004

王建,吴锡生. 基于改进的引导滤波和双通道脉冲耦合神经网络的医学图像融合[J]. 激光与光电子学进展, 2019, 56(15): 151004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF