首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:152302--1)

基于高迁移率透明导电氧化物的高速、低插入损耗硅基光波导移相器研究

High-Speed and Low-Insertion-Loss Silicon Waveguide Phase Shifter Based on High Mobility Transparent Conductive Oxides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

硅基光波导移相器是硅基光电子系统的重要组成部分。透明导电氧化物(TCO)薄膜的介电常数受栅极电压作用会产生调谐,有望应用于下一代高速、低插入损耗且兼容CMOS的硅基光波导移相器中。TCO较高的光吸收系数限制了其在移相器中的应用。提出了一种基于高迁移率的透明导电氧化物的低插入损耗硅基光波导移相器,并证明了TCO材料迁移率与其损耗密切相关。通过理论计算和数值仿真,设计了一种基于高迁移率氧化镉(CdO)材料(μ=300 cm 2·V -1·s -1)的硅基光波导移相器。所得器件在1550 nm波长实现π相移时,器件长度为127 μm,插入损耗为1.4 dB,调制带宽可达到300 GHz。为发展高速硅基光波导移相器件提供了新思路。

Abstract

Silicon-based optical waveguide phase shifters are key components in silicon-based photoelectronic systems. Transparent conductive oxide (TCO) films are expected to be applicable to the next generation of silicon-based optical waveguide phase shifters with high modulation speed, low insertion loss, and CMOS-compatibility due to their tunable permittivity under a gate voltage. However, the high optical absorption coefficient of the TCO has limited their application in electro-optic phase shifters. We propose a compact and low-insertion-loss silicon-based optical waveguide phase shifter based on TCOs with high electron mobility. We demonstrate that the mobility of the TCO material is closely related to their insertion loss. Based on theoretical calculations and numerical simulations, we propose a silicon-based optical waveguide phase shifter based on high-mobility cadmium oxide (CdO, μ=300 cm 2·V -1·s -1) materials. For π-phase shift at 1550 nm, this CdO-based phase shifter shows a low-insertion loss of 1.4 dB, device length of 127 μm, and modulation bandwidth of 300 GHz. It provides a new strategy for the development of high-speed silicon-based optical waveguide phase shifters.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.152302

所属栏目:光学器件

基金项目:国家自然科学基金面上项目(61475031)、国家自然科学基金优青项目(51522204)、科技部重点研发计划(2016YFA0300802);

收稿日期:2019-01-28

修改稿日期:2019-03-07

网络出版日期:2019-08-01

作者单位    点击查看

聂立霞:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 611731电子科技大学电子科学与工程学院, 四川 成都 611731
张燕:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 611731电子科技大学电子科学与工程学院, 四川 成都 611731
鲜仕林:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 611731电子科技大学电子科学与工程学院, 四川 成都 611731
秦俊:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 611731电子科技大学电子科学与工程学院, 四川 成都 611731
王会丽:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 611731电子科技大学电子科学与工程学院, 四川 成都 611731
毕磊:电子科技大学国家电磁辐射控制材料工程技术研究中心, 四川 成都 611731电子科技大学电子科学与工程学院, 四川 成都 611731

联系人作者:毕磊(bilei@uestc.edu.cn)

备注:国家自然科学基金面上项目(61475031)、国家自然科学基金优青项目(51522204)、科技部重点研发计划(2016YFA0300802);

【1】Soref R. The past, present, and future of silicon photonics. IEEE Journal of Selected Topics in Quantum Electronics. 12(6), 1678-1687(2006).

【2】Liu A S, Jones R, Liao L et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature. 427(6975), 615-618(2004).

【3】Subbaraman H, Xu X C, Hosseini A et al. Recent advances in silicon-based passive and active optical interconnects. Optics Express. 23(3), 2487-2511(2015).

【4】Zhuang D W, Han X C, Li Y X et al. Silicon-based optoelectronic integrated optical phased array. Laser & Optoelectronics Progress. 55(5), (2018).
庄东炜, 韩晓川, 李雨轩 等. 硅基光电子集成光控相控阵的研究进展. 激光与光电子学进展. 55(5), (2018).

【5】Chmielak B, Waldow M, Matheisen C et al. Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express. 19(18), 17212-17219(2011).

【6】Liang F C, Li M and Wu D M. Optimized design of low driving and high modulation X-cut LiNbO3 electro-optical modulator. Acta Optica Sinica. 38(7), (2018).
梁凤超, 李敏, 吴东岷. 低驱动、高调制X-Cut铌酸锂电光调制器的优化设计. 光学学报. 38(7), (2018).

【7】Rao A, Patil A, Malinowski M et al. Electro-optic and second-order nonlinear effects in thin film lithium niobate on silicon. [C]∥2017 IEEE Photonics Society Summer Topical Meeting Series (SUM), July 10-12, 2017,San Juan, Puerto Rico. New York: IEEE. 151-152(2017).

【8】Green W M J, Rooks M J, Sekaric L et al. . Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Optics Express. 15(25), 17106-17113(2007).

【9】Feng N N, Liao S R, Feng D Z et al. High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25 μm silicon-on-insulator waveguides. Optics Express. 18(8), 7994-7999(2010).

【10】Soref R and Bennett B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics. 23(1), 123-129(1987).

【11】Yaacobi A, Sun J, Moresco M et al. Integrated phased array for wide-angle beam steering. Optics Letters. 39(15), 4575-4578(2014).

【12】Coutts T J, Young D L and Li X N. Characterization of transparent conducting oxides. MRS Bulletin. 25(8), 58-65(2000).

【13】Kim J, Naik G V, Emani N K et al. Plasmonic resonances in nanostructured transparent conducting oxide films. IEEE Journal of Selected Topics in Quantum Electronics. 19(3), (2013).

【14】Walsh A and Wei S H. Multi-component transparent conducting oxides: progress in materials modelling. Journal of Physics: Condensed Matter. 23(33), (2011).

【15】Sorger V J. Lanzillotti-Kimura N D, Ma R M, et al. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics. 1(1), 17-22(2012).

【16】Yi F, Shim E, Zhu A Y et al. Voltage tuning of plasmonic absorbers by indium tin oxide. Applied Physics Letters. 102(22), (2013).

【17】Baek J, You J B and Yu K. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Optics Express. 23(12), 15863-15876(2015).

【18】Sinatkas G, Pitilakis A, Zografopoulos D C et al. Transparent conducting oxide electro-optic modulators on silicon platforms: a comprehensive study based on the drift-diffusion semiconductor model. Journal of Applied Physics. 121(2), (2017).

【19】Feigenbaum E, Diest K and Atwater H A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Letters. 10(6), 2111-2116(2010).

【20】Cai X Y, Wang X W, Li R X et al. Controllable modulation of surface plasmon resonance wavelength of ITO thin films. Laser & Optoelectronics Progress. 55(5), (2018).
蔡昕旸, 王新伟, 李如雪 等. ITO薄膜表面等离子体共振波长的可控调节. 激光与光电子学进展. 55(5), (2018).

【21】Fardad S, Ramos E A and Salandrino A. Accumulation-layer surface plasmons in transparent conductive oxides. Optics Letters. 42(10), 2038-2041(2017).

【22】Yan M, Lane M, Kannewurf C R et al. Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition. Applied Physics Letters. 78(16), 2342-2344(2001).

【23】Koffyberg F P. Electron concentration and mobility in semimetallic CdO. Canadian Journal of Physics. 49(4), 435-440(1971).

【24】van Daal H J. The static dielectric constant of SnO2. Journal of Applied Physics. 39(9), 4467-4469(1968).

【25】Ellmer K and Mientus R. Carrier transport in polycrystalline transparent conductive oxides: a comparative study of zinc oxide and indium oxide. Thin Solid Films. 516(14), 4620-4627(2008).

【26】Calnan S and Tiwari A N. High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films. 518(7), 1839-1849(2010).

【27】Wood M G, Campione S, Serkland D K et al. High-mobility transparent conducting oxides for compact epsilon-near-zero silicon integrated optical modulators. [C]∥Frontiers in Optics 2017, September 18-21, 2017, Washington, D.C., United States. Washington, D.C.: OSA. JW3A, (2007).

【28】Sachet E, Shelton C T, Harris J S et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nature Materials. 14(4), 414-420(2015).

【29】Exarhos G J and Zhou X D. Discovery-based design of transparent conducting oxide films. Thin Solid Films. 515(18), 7025-7052(2007).

【30】Koida T, Fujiwara H and Kondo M. Structural and electrical properties of hydrogen-doped In2O3 films fabricated by solid-phase crystallization. Journal of Non-Crystalline Solids. 354, 2805-2808(2008).

【31】Coutts T J, Young D L, Li X et al. Search for improved transparent conducting oxides: a fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 18(6), 2646-2660(2000).

【32】Babicheva V E, Boltasseva A and Lavrinenko A V. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics. 4(1), 165-185(2015).

【33】Wang J T, Zhou L J, Zhu H K et al. Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode. Photonics Research. 3(3), 58-62(2015).

【34】Han J H, Boeuf F, Fujikata J et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nature Photonics. 11(8), 486-490(2017).

【35】Harris N C, Ma Y J, Mower J et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Optics Express. 22(9), 10487-10493(2014).

【36】Lu Z L, Zhao W S and Shi K F. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics Journal. 4(3), 735-740(2012).

引用该论文

Lixia Nie, Yan Zhang, Shilin Xian, Jun Qin, Huili Wang, Lei Bi. High-Speed and Low-Insertion-Loss Silicon Waveguide Phase Shifter Based on High Mobility Transparent Conductive Oxides[J]. Laser & Optoelectronics Progress, 2019, 56(15): 152302

聂立霞, 张燕, 鲜仕林, 秦俊, 王会丽, 毕磊. 基于高迁移率透明导电氧化物的高速、低插入损耗硅基光波导移相器研究[J]. 激光与光电子学进展, 2019, 56(15): 152302

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF