首页 > 论文 > 激光与光电子学进展 > 56卷 > 24期(pp:240001--1)

用于三维显示的全息压缩技术概述 (封面文章)

Overview of Holographic-Compression Technology for Three-Dimensional Display (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

全息技术的应用使得三维显示发展迅速,给人们带来了无与伦比的视觉体验。全息图像、视频的计算和生成过程会产生庞大的数据,这给传输和存储带来了很大困难。为了满足3D显示的高清晰度和实时性要求,全息数据的压缩显得十分重要。由于全息图像与普通图像相比有着截然不同的特性,因此使用现有压缩技术难以达到最佳效果。介绍了全息压缩主要的技术问题,总结了全息数据压缩常用的度量,具体讨论了各国研究团体所提出的全息图像编码量化处理、变换系数化简、全息图国际标准格式优化和新型标准框架开发等前沿技术,并详述了它们各自的优劣,最后对于未来全息压缩技术研究的主要方向进行了展望。

Abstract

The application of holographic technology has enabled three-dimensional (3D) displays to develop rapidly, providing users an unparalleled visual experience. The calculation and generation processes of holographic images and video generate a considerable amount of data, causing great difficulties for transmission and storage. To meet the high-definition and real-time requirements of 3D displays, the compression of holographic data is critical. Since holographic images have distinct characteristics than ordinary images, it is difficult to achieve optimal results using existing compression techniques. This study introduces the main technical challenges of holographic compression and summarizes the commonly used metrics for holographic data compression. The cutting-edge technologies proposed by national research groups related to holographic-image-coding-quantization processing, transform-coefficient simplification, optimization of the international standard hologram format, and development of a new standard framework are discussed in detail, and their respective advantages and disadvantages are detailed. Finally, a future direction for research on holographic-compression technology is proposed.

广告组1.1 - 空间光调制器+DMD
补充资料

中图分类号:O438.1

DOI:10.3788/LOP56.240001

所属栏目:综述

基金项目:国家自然科学基金、云南省自然科学基金;

收稿日期:2019-04-04

修改稿日期:2019-06-05

网络出版日期:2019-12-01

作者单位    点击查看

姜智翔:昆明理工大学理学院激光研究所, 云南 昆明 650500
桂进斌:昆明理工大学理学院激光研究所, 云南 昆明 650500
王国庆:昆明理工大学理学院激光研究所, 云南 昆明 650500
金晓宇:昆明理工大学理学院激光研究所, 云南 昆明 650500

联系人作者:桂进斌(gjbpub@163.com)

备注:国家自然科学基金、云南省自然科学基金;

【1】Bove V M. Display holography''''s digital second act [J]. Proceedings of the IEEE. 2012, 100(4): 918-928.

【2】Dufaux F, Pesquet-Popescu B, Cagnazzo M. Emerging technologies for 3D video: creation, coding, transmission and rendering [M]. UK: John Wiley & Sons, Ltd. 2013.

【3】Javidi B, Ferraro P, Hong S H, et al. Three-dimensional image fusion by use of multiwavelength digital holography [J]. Optics Letters. 2005, 30(2): 144-146.

【4】Onural L, Gotchev A, Ozaktas H M, et al. A survey of signal processing problems and tools in holographic three-dimensional television [J]. IEEE Transactions on Circuits and Systems for Video Technology. 2007, 17(11): 1631-1646.

【5】Dufaux F, Xing Y F, Pesquet-Popescu B, et al. Compression of digital holographic data: an overview [J]. Proceedings of SPIE. 2015, 9599: 95990I.

【6】Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction [J]. Applied Optics. 1994, 33(2): 179-181.

【7】Yamaguchi I, Zhang T. Phase-shifting digital holography [J]. Optics Letters. 1997, 22(16): 1268-1270.

【8】Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging [J]. Optics Letters. 1999, 24(5): 291-293.

【9】Dallas W J. Computer-generated holograms [M]. ∥Frieden B R. The computer in optical research: Volume 41. Topics in applied physics. [S. l.: s. n.]. 1980, 291-366.

【10】Tricoles G. Computer generated holograms: an historical review [J]. Applied Optics. 1987, 26(20): 4351-4360.

【11】Blinder D, Bruylants T, Stijns E, et al. Wavelet coding of off-axis holographic images [J]. Proceedings of SPIE. 2013, 8856: 88561L.

【12】Goodman J W, Silvestri A M. Some effects of Fourier-domain phase quantization [J]. IBM Journal of Research and Development. 1970, 14(5): 478-484.

【13】Dallas W J. Phase quantization: a compact derivation [J]. Applied Optics. 1971, 10(3): 673-674.

【14】Dallas W J. Phase quantization in holograms: a few illustrations [J]. Applied Optics. 1971, 10(3): 674-676.

【15】Dallas W J, Lohmann A W. Phase quantization in holograms-depth effects [J]. Applied Optics. 1972, 11(1): 192-194.

【16】Wyrowski F. Iterative quantization of digital amplitude holograms [J]. Applied Optics. 1989, 28(18): 3864-3870.

【17】Kim M S, Guest C C. Block-quantized binary-phase holograms for optical interconnection [J]. Applied Optics. 1993, 32(5): 678-683.

【18】Nomura T, Okazaki A, Kameda M, et al. Digital holographic data reconstruction with data compression [J]. Proceedings of SPIE. 2001, 4471: 235-242.

【19】Chang H T. Preliminary studies on compressing interference patterns in electronic holography [M]. ∥Kuo C J, Tsai M H. Three-dimensional holographic imaging. New York: John Wiley & Sons, Inc. 2002, 99-117.

【20】Naughton T J, Frauel Y, Javidi B, et al. Compression of digital holograms for three-dimensional object reconstruction and recognition [J]. Applied Optics. 2002, 41(20): 4124-4132.

【21】Yamaguchi I, Matsumura T, Kato J I. Phase-shifting color digital holography [J]. Optics Letters. 2002, 27(13): 1108-1110.

【22】Hamada Y, Sato K, Morimoto M, et al. Recording and reconstruction of 3D color images of practical objects by phase-shifting holography [J]. Proceedings of SPIE. 2006, 6030: 603005.

【23】Darakis E, Naughton T J, Soraghan J J, et al. Measurement of compression defects in phase-shifting digital holographic data [J]. Proceedings of SPIE. 2006, 6311: 63110B.

【24】Cheremkhin P A, Kurbatova E A. Numerical comparison of scalar and vector methods of digital hologram compression [J]. Proceedings of SPIE. 2016, 10022: 1002227.

【25】Xing Y F, Kaaniche M, Pesquet-Popescu B, et al. Compression of digital holographic data[M]. ∥Xing Y F: , 2016, 39-70.

【26】Shortt A E, Naughton T J, Javidi B. Histogram approaches for lossy compression of digital holograms of three-dimensional objects [J]. IEEE Transactions on Image Processing. 2007, 16(6): 1548-1556.

【27】Naughton T J, Javidi B. Compression of encrypted three-dimensional objects using digital holography [J]. Optical Engineering. 2004, 43(10): 2233-2238.

【28】Mills G A, Yamaguchi I. Effects of quantization in phase-shifting digital holography [J]. Applied Optics. 2005, 44(7): 1216-1225.

【29】Shortt A E, Naughton T J, Javidi B. Combined nonuniform quantization and lossless coding of digital holograms of three-dimensional objects [J]. Proceedings of SPIE. 2003, 5243: 81-88.

【30】Shortt A E, Naughton T J, Javidi B. Nonuniform quantization compression techniques for digital holograms of three-dimensional objects [J]. Proceedings of SPIE. 2004, 5557: 30-41.

【31】Shortt A E, Naughton T J, Javidi B. A companding approach for nonuniform quantization of digital holograms of three-dimensional objects [J]. Optics Express. 2006, 14(12): 5129-5134.

【32】Xing Y F, Pesquet-Popescu B, Dufaux F. Vector quantization for computer generated phase-shifting holograms . [C]∥2013 Asilomar Conference on Signals, Systems and Computers, November 3-6, 2013, Pacific Grove, CA, USA. New York: IEEE. 2013, 709-713.

【33】Naughton T J. McDonald J B, Javidi B. Efficient compression of Fresnel fields for internet transmission of three-dimensional images [J]. Applied Optics. 2003, 42(23): 4758-4764.

【34】Darakis E, Soraghan J J. Use of Fresnelets for phase-shifting digital hologram compression [J]. IEEE Transactions on Image Processing. 2006, 15(12): 3804-3811.

【35】Darakis E, Soraghan J J. Compression of phase-shifting digital holography interference patterns [J]. Proceedings of SPIE. 2006, 6187: 61870Y.

【36】Tsang P. Cheung K W K, Poon T C. Low bit-rate compression of computer-generated Fresnel holograms based on vector quantization . [C]∥Digital Holography and Three-Dimensional Imaging, May 9-11, 2011, Tokyo, Japan. Washington, D.C.: OSA. 2011, DTuD1.

【37】Tsang P. Cheung K W K, Poon T C. Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited] [J]. Applied Optics. 2011, 50(34): H42-H49.

【38】Tsang P. Cheung K W K, Poon T C, et al. Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video [J]. Journal of Optics. 2012, 14(12): 125403.

【39】Wallace G K. The JPEG still picture compression standard [J]. Communications of the ACM. 1991, 34(4): 30-44.

【40】Schelkens P, Skodras A, Ebrahimi T. The JPEG 2000 suite [M]. UK: John Wiley & Sons, Ltd. 2009.

【41】Onural L. Digital decoding of in-line holograms [J]. Optical Engineering. 1987, 26(11): 261124.

【42】Yoshikawa H, Tamai J. Holographic image compression by motion picture coding [J]. Proceedings of SPIE. 1996, 2652: 1-9.

【43】Shortt A, Naughton T J, Javidi B. Compression of digital holograms of three-dimensional objects using wavelets [J]. Optics Express. 2006, 14(7): 2625-2630.

【44】Kurbatova E A, Cheremkhin P A, Evtikhiev N N. Methods of compression of digital holograms, based on 1-level wavelet transform [J]. Journal of Physics: Conference Series. 2016, 737(1): 012071.

【45】Bang L T, Ali Z, Quang P D, et al. Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform [J]. Optics Express. 2011, 19(9): 8019-8031.

【46】Yang G L, Shimizu E. CGH compressed and transmitted and reconstructed system with JPEG baseline processing and Fresnel transforming technique [J]. IEEJ Transactions on Electronics, Information and Systems. 2001, 121(8): 1326-1333.

【47】Yang G L, Shimizu E. Information compressed and transmitted and reconstructed system of CGH with LOCO-I image processing and Fraunhofer transforming technique [J]. IEEJ Transactions on Electronics, Information and Systems. 2000, 120(11): 1520-1527.

【48】Zhang C, Yang G L, Xie H Y. Information compression of computer-generated hologram using BP neural network . [C]∥Biomedical Optics and 3-D Imaging, April 11-14, 2010, Miami, Florida, United States. Washington, D.C.: OSA. 2010, JMA2.

【49】Cheremkhin P A, Kurbatova E A. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets [J]. Applied Optics. 2018, 57(1): A55-A64.

【50】International organization for standardization, /International electrotechnical commission, .Information technology—digital compression, guidelines: ISO/IEC 10918-1:. Switzerland: ISO [S/OL]. [2019-04-03]. https:∥www.iso.org/standard/18902.html. 1994.

【51】International organization for standardization, /International electrotechnical commission, .Information technology—JPEG. image coding system: core coding system: ISO/IEC 15444-1: 2016[S/OL] [2019-04-03]. Switzerland: ISO. https:∥www.iso.org/standard/70018.html?tdsourcetag=s_pcqq_aiomsg. 2000.

【52】Youssef A, Heshmat S. 3D holographic compression methods for real time applications . [C]∥2018 International Conference on Innovative Trends in Computer Engineering (ITCE), February 19-21, 2018, Aswan, Egypt. New York: IEEE. 2018, 136-139.

【53】Bell T, Vlahov B, Allebach J P, et al. Three-dimensional range geometry compression via phase encoding [J]. Applied Optics. 2017, 56(33): 9285-9292.

【54】Yeom S, Stern A, Javidi B. Compression of 3D color integral images [J]. Optics Express. 2004, 12(8): 1632-1642.

【55】Darakis E, Soraghan J J. Compression of interference patterns with application to phase-shifting digital holography [J]. Applied Optics. 2006, 45(11): 2437-2443.

【56】Blinder D, Bruylants T, Ottevaere H, et al. JPEG 2000-based compression of fringe patterns for digital holographic microscopy [J]. Optical Engineering. 2014, 53(12): 123102.

【57】Bruylants T, Blinder D, Ottevaere H, et al. Microscopic off-axis holographic image compression with JPEG 2000 [J]. Proceedings of SPIE. 2014, 9138: 91380F.

【58】Xing Y F, Pesquet-Popescu B, Dufaux F. Compression of computer generated hologram based on phase-shifting algorithm . [C]∥European Workshop on Visual Information Processing (EUVIP), June 10-12, 2013, Paris, France. New York: IEEE. 2013, 172-177.

【59】Xing Y F, Pesquet-Popescu B, Dufaux F. Compression of computer generated phase-shifting hologram sequence using AVC and HEVC [J]. Proceedings of SPIE. 2013, 8856: 88561M.

【60】Xing Y F, Pesquet-Popescu B, Dufaux F. Comparative study of scalar and vector quantization on different phase-shifting digital holographic data representations . [C]∥2014 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), July 2-4, 2014, Budapest, Hungary. New York: IEEE. 2014, 14515719.

【61】Xing Y F, Kaaniche M, Pesquet-Popescu B, et al. Vector lifting scheme for phase-shifting holographic data compression [J]. Optical Engineering. 2014, 53(11): 112312.

【62】Xing Y F, Kaaniche M, Pesquet-Popescu B, et al. Adaptive nonseparable vector lifting scheme for digital holographic data compression [J]. Applied Optics. 2015, 54(1): A98-A109.

【63】Kim S C, Dong X B, Kwon M W, et al. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table [J]. Optics Express. 2013, 21(9): 11568-11584.

【64】Dong X B, Kim S C, Kim E S. MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects [J]. Optics Express. 2014, 22(7): 8047-8067.

【65】Kwon M W, Kim S C, Kim E S. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes [J]. Applied Optics. 2016, 55(3): A22-A31.

【66】Blinder D, Ahar A, Symeonidou A, et al. Open access database for experimental validations of holographic compression engines . [C]∥2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX), May 26-29, 2015, Pylos-Nestoras, Greece. New York: IEEE. 2015, 15260774.

【67】Peixeiro J, Brites C, Ascenso J, et al. Digital holography: benchmarking coding standards and representation formats . [C]∥2016 IEEE International Conference on Multimedia and Expo (ICME), July 11-15, 2016, Seattle, WA, USA. New York: IEEE. 2016, 16266860.

【68】Murgia F, Giusto D. A database for evaluating the quality of experience in light field applications . [C]∥2016 24th Telecommunications Forum (TELFOR), November 22-23, 2016, Belgrade, Serbia. New York: IEEE. 2016, 16603192.

【69】Peixeiro J P, Brites C, Ascenso J, et al. Holographic data coding: benchmarking and extending HEVC with adapted transforms [J]. IEEE Transactions on Multimedia. 2018, 20(2): 282-297.

引用该论文

Jiang Zhixiang,Gui Jinbin,Wang Guoqing,Jin Xiaoyu. Overview of Holographic-Compression Technology for Three-Dimensional Display[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240001

姜智翔,桂进斌,王国庆,金晓宇. 用于三维显示的全息压缩技术概述[J]. 激光与光电子学进展, 2019, 56(24): 240001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF