首页 > 论文 > Photonics Research > 8卷 > 9期(pp:31-38)

Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In recent years, halide perovskite nanostructures have had great advances and have opened up a bright future for micro/nanolasers. However, upconversion lasing by two-photon excitation with mode selection and high quality factor in one device is still rarely reported. Herein, two lasing modes are demonstrated in the all-inorganic perovskite CsPb2Br5 microplates with subwavelength thickness and uniform square shape. The net optical gain is quickly established in less than 1 ps and persists more than 30 ps, revealed by ultrafast transient absorption spectroscopy. The temperature-dependent low-threshold amplified spontaneous emission confirms the net gain for stimulated emission with a high characteristic temperature of 403 K, far surpassing the all-inorganic CsPbBr3 semiconductor gain media. Remarkably, upconversion lasing based on two kinds of microcavity effects, Fabry–Pérot and whispering-gallery modes, from the microplates at room temperature is successfully achieved with a low threshold operating in multi- or single-mode, respectively. Surprisingly, the quality factor (3551) is among the best values obtained from perovskite micro/nanoplate upconversion lasers without an external cavity. Moreover, the highly stable chromaticity with color drift only less than 0.1 nm also outbalances the all-inorganic CsPbBr3 ones. These superior performances of CsPb2Br5 microplate lasing with a facile solution synthesis procedure will offer a feasible structure to fabricate specific functionalities for high-performance frequency upconversion micro/nanoscale photonic integrated devices.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.399960

所属栏目:Research Articles

基金项目:National Key Research and Development Program of China10.13039/501100012166; Strategic Priority Research Program of CAS; National Natural Science Foundation of China10.13039/501100001809; Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics); CAS Interdisciplinary Innovation Team; Program of Shanghai Academic Research Leader10.13039/501100012247;

收稿日期:2020-06-11

录用日期:2020-07-13

网络出版日期:2020-07-14

作者单位    点击查看

Zhengzheng Liu:State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Chunwei Wang:State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China;School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Zhiping Hu:Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Juan Du:State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;e-mail: dujuan@mail.siom.ac.cn
Jie Yang:Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Zeyu Zhang:State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Tongchao Shi:State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Weimin Liu:School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
Xiaosheng Tang:Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China;e-mail: xstang@cqu.edu.cn
Yuxin Leng:State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;e-mail: lengyuxinn@mail.siom.ac.cn

联系人作者:Juan Du(dujuan@mail.siom.ac.cn); Xiaosheng Tang(xstang@cqu.edu.cn); Yuxin L(lengyuxinn@mail.siom.ac.cn);

备注:National Key Research and Development Program of China10.13039/501100012166; Strategic Priority Research Program of CAS; National Natural Science Foundation of China10.13039/501100001809; Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics); CAS Interdisciplinary Innovation Team; Program of Shanghai Academic Research Leader10.13039/501100012247;

【1】R. M. Ma and R. F. Oulton. Applications of nanolasers. Nat. Nanotechnol. 14, 12-22(2019).

【2】B. Piccione, C. H. Cho, L. K. van Vugt and R. Agarwal. All-optical active switching in individual semiconductor nanowires. Nat. Nanotechnol. 7, 640-645(2012).

【3】M. T. Hill and M. C. Gather. Advances in small lasers. Nat. Photonics. 8, 908-918(2014).

【4】Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha and Q. Xiong. Advances in small perovskite-based lasers. Small Methods. 1, (2017).

【5】L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T. W. Lee and E. H. Sargent. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444-7477(2019).

【6】K. Wang, S. Wang, S. Xiao and Q. Song. Recent advances in perovskite micro- and nanolasers. Adv. Opt. Mater. 6, (2018).

【7】J. Li, C. Ren, X. Qiu, X. Lin, R. Chen, C. Yin and T. He. Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals. Photon. Res. 6, 554-559(2018).

【8】C.-H. Lin, A. Verma, C.-Y. Kang, Y.-M. Pai, T.-Y. Chen, J.-J. Yang, C.-W. Sher, Y.-Z. Yang, P.-T. Lee, C.-C. Lin, Y.-C. Wu, S. K. Sharma, T. Wu, S.-R. Chung and H.-C. Kuo. Hybrid-type white LEDs based on inorganic halide perovskite QDs: candidates for wide color gamut display backlights. Photon. Res. 7, 579-585(2019).

【9】S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone and P. Yang. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA. 113, 1993-1998(2016).

【10】H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin and X. Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636-642(2015).

【11】H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun and A. Pan. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano. 11, 1189-1195(2017).

【12】Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng and R. Li. Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano. 12, 5923-5931(2018).

【13】B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan and L. Zhang. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity. ACS Photon. 6, 793-801(2019).

【14】Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum and Q. Xiong. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238-6245(2016).

【15】J. Yang, Z. Liu, F. Zeng, M. Pi, T. Shi, Y. Bian, X. Tang, J. Du, W. Liu and Y. Leng. High-quality single-mode lasers based on zero-dimensional cesium lead halide perovskites. Solar RRL. 3, (2019).

【16】B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan and L. Zhang. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano. 11, 10681-10688(2017).

【17】Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng and H. Sun. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 16, 448-453(2016).

【18】L. Li, J. Ge, H. Wu, Q. H. Xu and S. Q. Yao. Organelle-specific detection of phosphatase activities with two-photon fluorogenic probes in cells and tissues. J. Am. Chem. Soc. 134, 12157-12167(2012).

【19】Y. Wang, V. D. Ta, Y. Gao, T. C. He, R. Chen, E. Mutlugun, H. V. Demir and H. D. Sun. Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater. 26, 2954-2961(2014).

【20】Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang and M. Xiao. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 138, 3761-3768(2016).

【21】X. Li, W. Liu, Y. Song, H. Long, K. Wang, B. Wang and P. Lu. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy. 68, (2020).

【22】Y. Wang, X. Li, V. Nalla, H. Zeng and H. Sun. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 27, (2017).

【23】Z. Liu, Z. Hu, Z. Zhang, J. Du, J. Yang, X. Tang, W. Liu and Y. Leng. Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals. ACS Photon. 6, 3150-3158(2019).

【24】X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang and A. Pan. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res. 10, 3385-3395(2017).

【25】Z. Gu, K. Wang, W. Sun, J. Li, S. Liu, Q. Song and S. Xiao. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4, 472-479(2016).

【26】Q. Wei, B. Du, B. Wu, J. Guo, M. J. Li, J. Fu, Z. Zhang, J. Yu, T. Hou, G. Xing, T. C. Sum and W. Huang. Two-photon optical properties in individual organic-inorganic perovskite microplates. Adv. Opt. Mater. 5, (2017).

【27】C. Huang, K. Wang, Z. Yang, L. Jiang, R. Liu, R. Su, Z.-K. Zhou and X. Wang. Up-conversion perovskite nanolaser with single mode and low threshold. J. Phys. Chem. C. 121, 10071-10077(2017).

【28】X. He, P. Liu, H. Zhang, Q. Liao, J. Yao and H. Fu. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29, (2017).

【29】W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao and Y. S. Zhao. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 28, 4040-4046(2016).

【30】J. Xu, X. Li, J. Xiong, C. Yuan, S. Semin, T. Rasing and X. H. Bu. Halide perovskites for nonlinear optics. Adv. Mater. 32, (2020).

【31】S. Wang, K. Wang, Z. Gu, Y. Wang, C. Huang, N. Yi, S. Xiao and Q. Song. Solution-phase synthesis of cesium lead halide perovskite microrods for high-quality microlasers and photodetectors. Adv. Opt. Mater. 5, (2017).

【32】X. Tang, Z. Hu, W. Yuan, W. Hu, H. Shao, D. Han, J. Zheng, J. Hao, Z. Zang, J. Du, Y. Leng, L. Fang and M. Zhou. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 5, (2017).

【33】C. Han, C. Li, Z. Zang, M. Wang, K. Sun, X. Tang and J. Du. Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photon. Res. 5, 473-480(2017).

【34】G. Tong, H. Li, D. Li, Z. Zhu, E. Xu, G. Li, L. Yu, J. Xu and Y. Jiang. Dual-phase CsPbBr3-CsPb2Br5 perovskite thin films via vapor deposition for high-performance rigid and flexible photodetectors. Small. 14, (2018).

【35】X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang and S. F. Liu. All-ambient processed binary CsPbBr3-CsPb2Br5 perovskites with synergistic enhancement for high-efficiency Cs-Pb-Br-based solar cells. ACS Appl. Mater. Interfaces. 10, 7145-7154(2018).

【36】Z. Xiao, W. Meng, J. Wang, D. B. Mitzi and Y. Yan. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206-216(2017).

【37】B. R. Sutherland and E. H. Sargent. Perovskite photonic sources. Nat. Photonics. 10, 295-302(2016).

【38】K.-H. Wang, L. Wu, L. Li, H.-B. Yao, H.-S. Qian and S.-H. Yu. Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angew. Chem. (Int. Ed.). 55, 8328-8332(2016).

【39】S. De Wolf, J. Holovsky, S. J. Moon, P. Loper, B. Niesen, M. Ledinsky, F. J. Haug, J. H. Yum and C. Ballif. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035-1039(2014).

【40】P. Geiregat, J. Maes, K. Chen, E. Drijvers, J. De Roo, J. M. Hodgkiss and Z. Hens. Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites. ACS Nano. 12, 10178-10188(2018).

【41】J. Fu, Q. Xu, G. Han, B. Wu, C. H. A. Huan, M. L. Leek and T. C. Sum. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8, (2017).

【42】A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, G. K. L. Wong, Y. Matsumoto and H. Koinuma. Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl. Phys. Lett. 77, 2204-2206(2000).

【43】J. J. Coleman, J. D. Young and A. Garg. Semiconductor quantum dot lasers: a tutorial. J. Lightwave Technol. 29, 499-510(2011).

【44】X. Zhuang, Y. Ouyang, X. Wang and A. Pan. Multicolor semiconductor lasers. Adv. Opt. Mater. 7, (2019).

【45】J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally. Single gallium nitride nanowire lasers. Nat. Mater. 1, 106-110(2002).

【46】X. Liu, Q. Zhang, Q. Xiong and T. C. Sum. Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. Nano Lett. 13, 1080-1085(2013).

引用该论文

Zhengzheng Liu, Chunwei Wang, Zhiping Hu, Juan Du, Jie Yang, Zeyu Zhang, Tongchao Shi, Weimin Liu, Xiaosheng Tang, and Yuxin Leng, "Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates," Photonics Research 8(9), A31 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF