首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:231404--1)

纳秒脉冲激光铣削Al2O3陶瓷工艺参数的优化

Process Parameter Optimization of Al2O3 Ceramics Milled with Nanosecond Pulsed Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用纳秒脉冲激光对Al2O3陶瓷进行激光铣削实验。使用响应面二阶回归模型建立铣削工艺参数与表面粗糙度、铣削深度之间的变化关系,通过灵敏度分析方法识别影响表面粗糙度和铣削深度的关键工艺参数;以最小化表面粗糙度和最大化铣削深度为优化目标,利用遗传算法确定理想的工艺参数组合,并进行实验验证。结果表明:基于响应面法的数学模型预测能力较强,铣削次数及搭接率对表面粗糙度和铣削深度的影响最为显著,优化参数下表面粗糙度与铣削深度的预测值分别为10.471 μm和120.526 μm,实验值分别为10.835 μm和131.277 μm,相对误差分别为3.36%和8.19%。

Abstract

Herein, laser milling of Al2O3 ceramics is conducted using nanosecond pulsed laser. The relationship among milling process parameters, surface roughness, and milling depth is investigated using response surface second-order regression model. In addition, the key process parameters affecting surface roughness and milling depth are identified using sensitivity analysis. A genetic algorithm is used to determine the optimal process parameters that minimize the surface roughness and maximize the milling depth. These parameters are then experimentally verified. Results indicate a strong predictive ability of the mathematical model based on the response surface method. The number of milling times and overlap rate have the most significant effect on the surface roughness and milling depth. Under optimized parameters, the predicted surface roughness and milling depth are found to be 10.471 μm and 120.526 μm, respectively, while their corresponding experimental values are 10.835 μm and 131.277 μm, respectively. Therefore, the relative errors in case of surface roughness and milling depth are only 3.36% and 8.19%, respectively.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.231404

所属栏目:激光器与激光光学

基金项目:江苏省先进制造技术重点实验室开放基金、江苏省重点研发计划项目、江苏省博士后科研资助计划;

收稿日期:2019-07-01

修改稿日期:2019-08-28

网络出版日期:2019-12-01

作者单位    点击查看

许兆美:淮阴工学院江苏省先进制造技术重点实验室, 江苏 淮安 223003
孟宪凯:江苏大学先进制造与现代装备技术工程研究院, 江苏 镇江 212013
屈彦荣:淮阴工学院江苏省先进制造技术重点实验室, 江苏 淮安 223003
朱为国:淮阴工学院江苏省先进制造技术重点实验室, 江苏 淮安 223003
郭召恒:江苏大学机械工程学院, 江苏 镇江 212013

联系人作者:许兆美(fuyun588@163.com); 朱为国(1229849292@qq.com);

备注:江苏省先进制造技术重点实验室开放基金、江苏省重点研发计划项目、江苏省博士后科研资助计划;

【1】Leone C, Genna S, Tagliaferri F, et al. Experimental investigation on laser milling of aluminium oxide using a 30 W Q-switched Yb∶YAG fiber laser [J]. Optics & Laser Technology. 2016, 76: 127-137.

【2】Kibria G, Doloi B, Bhattacharyya B. Experimental investigation and multi-objective optimization of Nd∶YAG laser micro-turning process of alumina ceramic using orthogonal array and grey relational analysis [J]. Optics & Laser Technology. 2013, 48: 16-27.

【3】Yao Y S, Chen Q B, Wang J, et al. Water-jet assisted laser precision processing of Si3N4 ceramics [J]. Optics and Precision Engineering. 2018, 26(11): 2723-2731.
姚燕生, 陈庆波, 汪俊, 等. 氮化硅陶瓷水射流辅助激光精密加工 [J]. 光学精密工程. 2018, 26(11): 2723-2731.

【4】Biswas R, Kuar A S, Mitra S. Process optimization in Nd∶YAG laser microdrilling of alumina-aluminium interpenetrating phase composite [J]. Journal of Materials Research and Technology. 2015, 4(3): 323-332.

【5】Lu F, Tian X L, Wu Z Y. Experiment on plasma arc thermal cutting of the engineering ceramics [J]. Journal of Academy of Armored Force Engineering. 2007, 21(1): 81-83.
卢芳, 田欣利, 吴志远. 等离子弧加热切削工程陶瓷试验 [J]. 装甲兵工程学院学报. 2007, 21(1): 81-83.

【6】Samant A N, Dahotre N B. Differences in physical phenomena governing laser machining of structural ceramics [J]. Ceramics International. 2009, 35(5): 2093-2097.

【7】Karnakis D, Rutterford G, Knowles M, et al. Laser micro-milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers [J]. Proceedings of SPIE-The International Society for Optical Engineering. 2006, 6106: 6106131-6106134.

【8】Xu Q, Shao Z S, Zhu S Z, et al. Laser ablation behavior of ZrB2-ZrC ultra high temperature ceramics [J]. Rare Metal Materials and Engineering. 2015, 44(S1): 533-536.
徐强, 邵正山, 朱时珍, 等. ZrB2-ZrC超高温陶瓷激光烧蚀行为研究 [J]. 稀有金属材料与工程. 2015, 44(S1): 533-536.

【9】Li J, Ji L F, Hu Y, et al. Experimental study on milling of Y-TZP ceramic by 532 nm laser [J]. Chinese Journal of Lasers. 2015, 42(8): 0806002.
李健, 季凌飞, 胡炎, 等. 532 nm激光铣削Y-TZP陶瓷实验研究 [J]. 中国激光. 2015, 42(8): 0806002.

【10】Xu Z M, Hong Z H, Jiang S Q, et al. Finite element simulation and experimental research in laser milling of Al2O3 ceramic [J]. Acta Optica Sinica. 2014, 34(s2): s214009.
许兆美, 洪宗海, 蒋素琴, 等. Al2O3陶瓷激光铣削有限元模拟与实验研究 [J]. 光学学报. 2014, 34(s2): s214009.

【11】Wang L, Huang C Z, Wang J, et al. An experimental investigation on laser assisted waterjet micro-milling of silicon nitride ceramics [J]. Ceramics International. 2018, 44(5): 5636-5645.

【12】Pham D T, Dimov S S, Petkov P V. Laser milling of ceramic components [J]. International Journal of Machine Tools and Manufacture. 2007, 47(3/4): 618-626.

【13】Umer U, Mohammed M K, Al-Ahmari A. Multi-response optimization of machining parameters in micro milling of alumina ceramics using Nd∶YAG laser [J]. Measurement. 2017, 95: 181-192.

【14】Kibria G, Doloi B, Bhattacharyya B. Investigation into the effect of overlap factors and process parameters on surface roughness and machined depth during micro-turning process with Nd∶YAG laser [J]. Optics & Laser Technology. 2014, 60: 90-98.

【15】Campanelli S L, Casalino G, Contuzzi N. Multi-objective optimization of laser milling of 5754 aluminum alloy [J]. Optics & Laser Technology. 2013, 52: 48-56.

【16】Yuan G F, Zeng X Y. Experimental study of laser milling on Al2O3 ceramics [J]. Chinese Journal of Lasers. 2003, 30(5): 467-470.
袁根福, 曾晓雁. Al2O3陶瓷激光铣削试验研究 [J]. 中国激光. 2003, 30(5): 467-470.

【17】Zhou J Z, She J, Huang S, et al. Research of aluminum/steel dissimilar metal laser welding-brazing and parameter optimization based on RSM [J]. Chinese Journal of Lasers. 2015, 42(s1): s103004.
周建忠, 佘杰, 黄舒, 等. 基于RSM的铝/钢异种金属激光熔钎焊工艺研究与参数优化 [J]. 中国激光. 2015, 42(s1): s103004.

【18】Liu Y, Zhang J, Pang Z C, et al. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method [J]. Optics and Lasers in Engineering. 2018, 103: 34-45.

【19】Chu Z T, Yu Z S, Zhang P L, et al. Weld profile prediction and process parameters optimization of T-joints of laser full penetration welding via response surface methodology [J]. Chinese Journal of Lasers. 2015, 42(2): 0203006.
褚振涛, 于治水, 张培磊, 等. 基于响应面分析的T型接头激光深熔焊焊缝形貌预测及工艺参数优化 [J]. 中国激光. 2015, 42(2): 0203006.

【20】Senthilkumar B, Kannan T. Sensitivity analysis of flux cored arc welding process variables in super duplex stainless steel claddings [J]. Procedia Engineering. 2013, 64: 1030-1039.

【21】Cheng Q, Zhao H W, Zhang G J, et al. An analytical approach for crucial geometric errors identification of multi-axis machine tool based on global sensitivity analysis [J]. The International Journal of Advanced Manufacturing Technology. 2014, 75: 107-121.

【22】Tian X J, Liu Y H, Deng W, et al. Sensitivity analysis for process parameters influencing electric arc cutting [J]. The International Journal of Advanced Manufacturing Technology. 2015, 78: 481-492.

【23】Huang J, Chen Z B, Liu Q M, et al. Multi-objective optimization for laser closure process parameters in vitro skin tissue based on NSGA-Ⅱ [J]. Chinese Journal of Lasers. 2019, 46(2): 0207001.
黄俊, 陈子博, 刘其蒙, 等. 基于NSGA-Ⅱ的离体皮肤组织激光融合工艺参数的多目标优化 [J]. 中国激光. 2019, 46(2): 0207001.

引用该论文

Xu Zhaomei,Meng Xiankai,Qu Yanrong,Zhu Weiguo,Guo Zhaoheng. Process Parameter Optimization of Al2O3 Ceramics Milled with Nanosecond Pulsed Laser[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231404

许兆美,孟宪凯,屈彦荣,朱为国,郭召恒. 纳秒脉冲激光铣削Al2O3陶瓷工艺参数的优化[J]. 激光与光电子学进展, 2019, 56(23): 231404

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF