首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1002001--1)

激光熔覆制备铁基复合涂层及其耐热耐蚀性能

Fe-Based Composite Coating Prepared by Laser Cladding and Its Heat and Corrosion Resistance

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为解决现有甲板防滑涂层在高温、高速气流冲蚀等特殊服役条件下的使用及防护问题,采用激光熔覆技术在Q235碳钢表面制备了316L不锈钢耐蚀底层和316L+(ZrO2-8%Y2O3)防滑面层。采用腐蚀电化学测试方法研究涂层在海洋环境中的腐蚀电化学行为,并结合能谱分析及电镜分析等现代分析测试技术,对腐蚀后涂层的微观组织及内部结构进行表征;此外,对比分析了涂层在不同温度(200,400,1000 ℃)下的耐热性能和微观组织。结果表明:该新型铁基复合涂层表现出了较好的耐蚀性,且其耐蚀性比碳钢基体高出了2个数量级;在1000 ℃高温下,涂层表面无明显的剥落、开裂现象,表现出了较好的耐高温性能。

Abstract

To solve the problems of the use and protection of existing deck anti-skid composite coatings under special service conditions such as high-temperature and high-speed air erosion, we prepared a 316L stainless steel corrosion-resistant bottom layer and 316L+(ZrO2-8%Y2O3) anti-skid top layer on a Q235 carbon steel surface using the laser cladding technology. Corrosion electrochemical analysis was carried out to investigate the corrosion electrochemical behavior of the coatings in a marine environment. Furthermore, the microstructure and the internal structure of the coatings were characterized via the modern analytical testing techniques, including X-ray diffraction and scanning electron microscopy. At different temperatures (200 ℃, 400 ℃, and 1000 ℃), the heat resistance and microstructures of the coatings were compared. The results show that the novel Fe-based composite coating exhibits good corrosion resistance, which is two orders of magnitude higher than that of the carbon steel matrix. At the high-temperature condition of 1000 ℃, there was no obvious peeling and cracks on the surface of the Fe-based coating, indicating good high-temperature resistance.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249; TG174.44

DOI:10.3788/CJL202047.1002001

所属栏目:激光制造

基金项目:山东省重点研发计划、山东省博士后创新项目、青岛市博士后应用研究项目;

收稿日期:2020-03-10

修改稿日期:2020-05-26

网络出版日期:2020-10-01

作者单位    点击查看

白杨:海洋化工研究院有限公司海洋涂料国家重点实验室, 山东 青岛 266071
王振华:中船重工七二五所海洋腐蚀与防护重点实验室, 山东 青岛 266237
左娟娟:海洋化工研究院有限公司海洋涂料国家重点实验室, 山东 青岛 266071
姜秀杰:海洋化工研究院有限公司海洋涂料国家重点实验室, 山东 青岛 266071
张学卿:海洋化工研究院有限公司海洋涂料国家重点实验室, 山东 青岛 266071

联系人作者:白杨(b14040127@s.upc.edu.cn)

备注:山东省重点研发计划、山东省博士后创新项目、青岛市博士后应用研究项目;

【1】Song S H, Zhang X Q. Summary on the anti-skid coatings [J]. China Coatings. 2009, 24(7): 60-63.
宋世红, 张学卿. 防滑涂料概论 [J]. 中国涂料. 2009, 24(7): 60-63.

【2】Gu M B, Jiang X J, Leng X F, et al. Aircraft skid-resistant coatings summary [J]. China Coatings. 2013, 28(7): 69-71.
谷美邦, 姜秀杰, 冷晓飞, 等. 飞机防滑涂料概述 [J]. 中国涂料. 2013, 28(7): 69-71.

【3】Zhang X N, Liu T, Liu C L, et al. Research on skid resistance of asphalt pavement based on three-dimensional laser-scanning technology and pressure-sensitive film [J]. Construction and Building Materials. 2014, 69: 49-59.

【4】Hadiwardoyo S P, Sinaga E S, Fikri H. The influence of Buton asphalt additive on skid resistance based on penetration index and temperature [J]. Construction and Building Materials. 2013, 42: 5-10.

【5】Deng Q, Xu J W, Gao X H, et al. Technology and developing tendency of warship deck paints [J]. Chinese Journal of Ship Research. 2013, 8(2): 111-116.
邓琦, 徐金文, 高新华, 等. 舰船甲板防滑涂料技术现状及发展趋势 [J]. 中国舰船研究. 2013, 8(2): 111-116.

【6】Hong W H. Situation and development trend of foreign aircraft carrier deck anti-slip coating technology [J]. Ship Science and Technology. 2015, 37(12): 166-169.
洪伟宏. 国外航母甲板防滑涂料技术现状及发展趋势 [J]. 舰船科学技术. 2015, 37(12): 166-169.

【7】于月光, 高峰, 张鑫, 等. 一种耐腐蚀防滑涂层制备方法及涂层结构:CN104357793A [P/OL]. 2020.
Yu Y G, Gao F, Zhang X, et al. Preparation method and coating structure of anti-slip coating [P/OL]. 2020.
于月光, 高峰, 张鑫, 等. 一种耐腐蚀防滑涂层制备方法及涂层结构:CN104357793A [P/OL]. 2020.
Yu Y G, Gao F, Zhang X, et al. Preparation method and coating structure of anti-slip coating [P/OL]. 2020.

【8】Liu C M. Research of the polyurethane anti-skid deck coatings reinforced by SiC fibers [D]. Changsha: National University of Defense Technology. 2014.
刘承明. SiC纤维增强的聚氨酯系甲板防滑涂料研究 [D]. 长沙: 国防科学技术大学. 2014.

【9】Cheng J B, Liu D, Liang X B, et al. Wear behaviors of arc-sprayed FeBSiNb amorphous coatings [J]. Tribology Letters. 2015, 60(2): 22.

【10】Wu Q D, Xiao J K, Zhang G, et al. Thermal sprayed metal-based non-skid wear-resistant coatings [J]. Surface Technology. 2018, 47(4): 251-259.
吴庆丹, 肖金坤, 张嘎, 等. 热喷涂金属基防滑耐磨涂层的研究进展 [J]. 表面技术. 2018, 47(4): 251-259.

【11】Jiang C P, Xing Y Z, Hao J M, et al. Effects of heat-treatment on crystallization and wear property of plasma sprayed Fe-based amorphous coatings [J]. Journal of Wuhan University of Technology(Materials Science Edition). 2013, 28(4): 643-646.

【12】Segu D Z, Choi J H, Kim S S. Sliding wear behavior of Fe-based bulk metallic glass at high temperature [J]. Journal of Mechanical Science and Technology. 2012, 26(11): 3565-3570.

【13】Li Y N, Li Z G, Wang X X, et al. Fe-based wear-resistant coating on railroad switch prepared using laser cladding technology and its properties [J]. Chinese Journal of Lasers. 2020, 47(4): 0402009.
李英男, 李铸国, 王晓翔, 等. 道岔尖轨表面的激光熔覆铁基耐磨涂层及其性能 [J]. 中国激光. 2020, 47(4): 0402009.

【14】Wang Y F, Li H, Sun X, et al. Microstructures and formation mechanism of Fe-based amorphous coatings by broad-band laser cladding [J]. Chinese Journal of Lasers. 2018, 45(3): 0302006.
王彦芳, 李豪, 孙旭, 等. 宽带激光熔覆铁基非晶涂层的微观组织及形成机制 [J]. 中国激光. 2018, 45(3): 0302006.

【15】Tang C Y, Wang M W, Zhuang Z F, et al. Research progress of laser cladding technology to prepare amorphous alloy coating [J]. Laser Journal. 2015, 36(12): 22-25.
唐翠勇, 汪明文, 庄哲峰, 等. 激光熔覆技术制备非晶合金涂层的研究进展 [J]. 激光杂志. 2015, 36(12): 22-25.

【16】Weng F, Chen C Z, Yu H J. Research status of laser cladding on titanium and its alloys: a review [J]. Materials & Design. 2014, 58: 412-425.

【17】Leunda J, García Navas V, Soriano C, et al. Effect of laser tempering of high alloy powder metallurgical tool steels after laser cladding [J]. Surface and Coatings Technology. 2014, 259: 570-576.

【18】Liu S, Wang Q Y, Xi Y C, et al. Effect of heat treatment on mechanical and anti-corrosion properties of Fe-based laser cladded coatings [J]. Laser & Optoelectronics Progress. 2019, 56(12): 121401.
刘双, 王勤英, 西宇辰, 等. 热处理对铁基激光熔覆层力学及耐腐蚀性能的影响 [J]. 激光与光电子学进展. 2019, 56(12): 121401.

【19】Zhou J Z, He W Y, Xu J L, et al. Strengthening mechanism and wear resistance of Al2O3/Fe901 composite coating prepared by laser cladding [J]. Acta Optica Sinica. 2019, 39(5): 0514001.
周建忠, 何文渊, 徐家乐, 等. 激光熔覆Al2O3/Fe901复合涂层的强化机制及耐磨性 [J]. 光学学报. 2019, 39(5): 0514001.

【20】中国石油和化学工业协会. 色漆和清漆耐热性的测定: GB/T 1735—2009[S]. 北京: 中国标准出版社, 2010.
China Petroleum, Chemical Industry Association. Paints and varnishes: determination of heat resistance: GB/T 1735—2009[S]. Beijing: Standards Press of China, 2010.

【21】Wu L F, Zeng Q S, Yang Y, et al. Research progress of surface crack in laser cladding Mechanical Engineer[J]. 0, 2016(9): 26-27.
吴柳飞, 曾庆生, 杨毅, 等. 激光熔覆表面裂纹的研究进展 机械工程师[J]. 0, 2016(9): 26-27.

【22】Zhong W H, Liu G Z, Pan J Z, et al. Effect of Y2O3 on structure and properties of Ni/Cr3C2 cladding layer [J]. Transactions of Materials and Heat Treatment. 2013, 34(2): 147-151.
钟文华, 刘贵仲, 潘洁宗, 等. Y2O3对镍基碳化铬激光熔覆层结构性能的影响 [J]. 材料热处理学报. 2013, 34(2): 147-151.

【23】Cherg Q L, Tin T, Song L Y, et al. Corrosion behaviour of Q235B carbon steel in sediment water from crude oil [J]. Corrosion Science. 2016, 111(10): 61-71.

引用该论文

Bai Yang,Wang Zhenhua,Zuo Juanjuan,Jiang Xiujie,Zhang Xueqing. Fe-Based Composite Coating Prepared by Laser Cladding and Its Heat and Corrosion Resistance[J]. Chinese Journal of Lasers, 2020, 47(10): 1002001

白杨,王振华,左娟娟,姜秀杰,张学卿. 激光熔覆制备铁基复合涂层及其耐热耐蚀性能[J]. 中国激光, 2020, 47(10): 1002001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF