首页 > 论文 > 中国激光 > 47卷 > 9期(pp:906005--1)

基于全光纤环形谐振腔的转移腔稳频技术研究

Research on Frequency Stabilization Technology of Transfer Cavity Based on All-Fiber Ring Resonator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将保偏全光纤环形谐振腔作为转移腔,实现了1550 nm参考激光器到1572 nm从激光器的频率稳定度转移,并研究了温度对光纤谐振腔长期稳定性的影响。理论和实验表明,仅通过压电陶瓷调谐腔长不能很好地实现频率稳定度转移。因此,提出用压电陶瓷快反馈和温控实现环形腔的稳定度转移,可使从激光器的频率稳定度在积分时间为1 s时的阿伦方差为2×10 -12,在积分时间为1000 s时的阿伦方差为5×10 -12。

Abstract

Using polarization-maintaining all-fiber ring resonator as the transfer cavity, a frequency stability transfer from 1550 nm reference laser to 1572 nm slave laser is realized in this work. The influence of temperature on the long-term stability of the fiber resonator is studied. Theoretical and experimental results show that the frequency stability transfer could not be realized well only by tuning the cavity length of piezoelectric ceramic resonator. Therefore, it is proposed to realize the stability transfer of the ring resonator by using piezoelectric ceramic fast feedback and temperature control. The Allan variance of the frequency stability of the slave laser is 2×10 -12 when the integration time is 1 s and 5×10 -12 when the integration time is 1000 s.

广告组5 - 光束分析仪
补充资料

中图分类号:TN249

DOI:10.3788/CJL202047.0906005

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、国家重点研发计划、“十三五”航天领域预研专用技术项目、上海市青年科技英才扬帆计划;

收稿日期:2020-03-26

修改稿日期:2020-05-13

网络出版日期:2020-09-01

作者单位    点击查看

王吉:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
陈迪俊:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
魏芳:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
孙延光:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
皮浩洋:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
杨中国:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
吴瑞:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
应康:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
蔡海文:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
陈卫标:中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800

联系人作者:陈迪俊(djchen@siom.ac.cn)

备注:国家自然科学基金、国家重点研发计划、“十三五”航天领域预研专用技术项目、上海市青年科技英才扬帆计划;

【1】Du J, Sun Y G, Chen D J, et al. Research of a compact iodine-stabilized diode laser at 1064 nm [J]. Chinese Journal of Lasers. 2018, 45(7): 0701006.
杜娟, 孙延光, 陈迪俊, 等. 小型化碘稳频1064 nm半导体激光器研究 [J]. 中国激光. 2018, 45(7): 0701006.

【2】Liu H F, Wang J, Yang G, et al. Two-photon polarization spectroscopy of rubidium 4D5/2 state and its application for frequency stabilization of 1.5 μm laser [J]. Chinese Journal of Lasers. 2014, 41(7): 0715004.
刘慧丰, 王杰, 杨光, 等. 铷原子4D5/2态双光子偏振光谱及其在1.5 μm激光稳频中的应用 [J]. 中国激光. 2014, 41(7): 0715004.

【3】Huang C D, Chen D J, Cai H W, et al. Laser frequency stabilization technology based on hollow-core photonics crystal fiber gas cell [J]. Chinese Journal of Lasers. 2014, 41(8): 0802006.
黄崇德, 陈迪俊, 蔡海文, 等. 空芯光子晶体光纤吸收池的激光稳频技术 [J]. 中国激光. 2014, 41(8): 0802006.

【4】Xia Y, Cheng X W, Li F Q, et al. Laser frequency stabilization and shifting applied in narrowband sodium lidar system for wind and temperature measurement [J]. Laser & Optoelectronics Progress. 2018, 55(10): 102801.
夏媛, 程学武, 李发泉, 等. 应用于窄带钠风温探测激光雷达的稳频和移频方法 [J]. 激光与光电子学进展. 2018, 55(10): 102801.

【5】H?nsch T W. Nobel lecture: passion for precision [J]. Reviews of Modern Physics. 2006, 78(4): 1297-1309.

【6】Xie C, Wang L, Chen L, et al. Frequency stabilization of an AlGaAs laser diode by a Fabry-Perot interferometer locked to a laser beam frequency-locked to the D(2) line of a Cs atomic beam [J]. Applied Optics. 1989, 28(21): 4552-4555.

【7】Ramdane A C, Grüning P, Roncin V, et al. Stability transfer at 15 μm for metrological applications using a commercial optical cavity [J]. Applied Optics. 2017, 56(1): 8-14.

【8】Zeng Y, Wang K P, Liu Y Y, et al. Stabilizing dual laser with a tunable high-finesse transfer cavity for single-atom Rydberg excitation [J]. Journal of the Optical Society of America B. 2018, 35(2): 454-459.

【9】Wang Z B, Zhang J W, Wang S G, et al. Laser frequency stability transfer using a fiber-based interferometer [J]. Applied Optics. 2014, 53(15): 3283-3286.

【10】Grüning P, Chaouche-Ramdane A, Manamanni K, et al. All-fiber ring-cavity for frequency stability transfer at 1.55 μm [J]. Applied Optics. 2019, 58(6): 1502-1507.

【11】Carr J J, Saikkonen S L, Williams D H. Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress, and temperature [J]. Fiber and Integrated Optics. 1990, 9(4): 393-396.

【12】Hartog A H, Conduit A J, Payne D N. Variation of pulse delay with stress and temperature in jacketed and unjacketed optical fibres [J]. Optical and Quantum Electronics. 1979, 11(3): 265-273.

【13】Yuan L B. Effect of temperature and strain on fiber optic refractive index [J]. Acta Optica Sinica. 1997, 17(12): 1713-1717.
苑立波. 温度和应变对光纤折射率的影响 [J]. 光学学报. 1997, 17(12): 1713-1717.

【14】Cai C P. Dependent factor of refractive index in fibers [J]. Journal of Applied Optics. 2000, 21(5): 13-18.
蔡春平. 光纤折射率的依赖因素 [J]. 应用光学. 2000, 21(5): 13-18.

【15】Toyoda T, Yabe M. The temperature dependence of the refractive indices of fused silica and crystal quartz [J]. Journal of Physics D: Applied Physics. 1983, 16(5): L97-L100.

【16】Wray J H, Neu J T. Refractive index of several glasses as a function of wavelength and temperature [J]. Journal of the Optical Society of America. 1969, 59(6): 774.

【17】Leviton D B, Frey B J. Temperature-dependent absolute refractive index measurements of synthetic fused silica [J]. Proceedings of SPIE. 2006, 6273: 62732K.

【18】Jack A S. -11-20)[2004-11-24] . https:∥emtoolbox.nist.gov/Wavelength/Edlen.asp. 2000.

【19】Black E. An introduction to Pound-Drever-Hall laser frequency stabilization [J]. American Journal of Physics. 2001, 69(1): 79-87.

引用该论文

Wang Ji,Chen Dijun,Wei Fang,Sun Yanguang,Pi Haoyang,Yang Zhongguo,Wu Rui,Ying Kang,Cai Haiwen,Chen Weibiao. Research on Frequency Stabilization Technology of Transfer Cavity Based on All-Fiber Ring Resonator[J]. Chinese Journal of Lasers, 2020, 47(9): 0906005

王吉,陈迪俊,魏芳,孙延光,皮浩洋,杨中国,吴瑞,应康,蔡海文,陈卫标. 基于全光纤环形谐振腔的转移腔稳频技术研究[J]. 中国激光, 2020, 47(9): 0906005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF